977 resultados para Passion-plays.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sign.: []4

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sign.: []2

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sign.: *8, A-Q8, R4

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate the use of the conductivity test as a means of predicting seed viability in seven Passiflora species: P. alata, P. cincinnata, P. edulis f. edulis, P. edulis f. flavicarpa, P. morifolia, P. mucronata, and P. nitida. Conductivity of non?desiccated (control), desiccated, and non?desiccated cryopreserved seeds was determined and related to their germination percentage. The obtained results suggest that the electrical conductivity test has potential as a germination predictor for P. edulis f. flavicarpa seed lots, but not for the other tested species. Index terms: Passiflora, seed cryopreservation, seed desiccation, seed viability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

My project in this paper is to provide a plausible idea of Christ’s suffering and death in terms of a theory of the human person. More specifically, I want to contrast two major theories of the person-body relation. One is dualism. Dualism is the view that a human person is composed of two substances, that is, a soul and a body, and he (strictly speaking) is identical with the soul. On the other hand, physicalism is the view that a human person is numerically identical with his biological body. I will argue that dualism is not successful in explaining Christ’s passion for some reasons. Rather, physicalism, as I shall argue, provides a better explanation of how Christ’s physical suffering and death are real just like everyone else’s, so it is philosophically and theologically more plausible than dualism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides to deoxynucleotides. Class I RNRs are composed of two types of subunits: RNR1 contains the active site for reduction and the binding sites for the nucleotide allosteric effectors. RNR2 contains the diiron-tyrosyl radical (Y⋅) cofactor essential for the reduction process. Studies in yeast have recently identified four RNR subunits: Y1 and Y3, Y2 and Y4. These proteins have been expressed in Saccharomyces cerevisiae and in Escherichia coli and purified to ≈90% homogeneity. The specific activity of Y1 isolated from yeast and E. coli is 0.03 μmol⋅min−1⋅mg−1 and of (His)6-Y2 [(His)6-Y2-K387N] from yeast is 0.037 μmol⋅min−1⋅mg−1 (0.125 μmol⋅min−1⋅mg−1). Y2, Y3, and Y4 isolated from E. coli have no measurable activity. Efforts to generate Y⋅ in Y2 or Y4 using Fe2+, O2, and reductant have been unsuccessful. However, preliminary studies show that incubation of Y4 and Fe2+ with inactive E. coli Y2 followed by addition of O2 generates Y2 with a specific activity of 0.069 μmol⋅min−1⋅mg−1 and a Y⋅. A similar experiment with (His)6-Y2-K387N, Y4, O2, and Fe2+ results in an increase in its specific activity to 0.30 μmol⋅min−1⋅mg−1. Studies with antibodies to Y4 and Y2 reveal that they can form a complex in vivo. Y4 appears to play an important role in diiron-Y⋅ assembly of Y2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies of the continuum between geographic races and species provide the clearest insights into the causes of speciation. Here we report on mate choice and hybrid viability experiments in a pair of warningly colored butterflies, Heliconius erato and Heliconius himera, that maintain their genetic integrity in the face of hybridization. Hybrid sterility and inviability have been unimportant in the early stages of speciation of these two Heliconius. We find no evidence of reduced fecundity, egg hatch, or larval survival nor increases in developmental time in three generations of hybrid crosses. Instead, speciation in this pair appears to have been catalyzed by the association of strong mating preferences with divergence in warning coloration and ecology. In mate choice experiments, matings between the two species are a tenth as likely as matings within species. F1 hybrids of both sexes mate frequently with both pure forms. However, male F1 progeny from crosses between H. himera mothers and H. erato fathers have somewhat reduced mating success. The strong barrier to gene flow provided by divergence in mate preference is probably enhanced by frequency-dependent predation against hybrids similar to the type known to occur across interracial hybrid zones of H. erato. In addition, the transition between this pair falls at the boundary between wet and dry forest, and rare hybrids may also be selected against because they are poorly adapted to either biotope. These results add to a growing body of evidence that challenge the importance of genomic incompatibilities in the earliest stages of speciation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenovirus (Ad) gene transfer vectors are rapidly cleared from infected hepatocytes in mice. To determine which effector mechanisms are responsible for elimination of the Ad vectors, we infected mice that were genetically compromised in immune effector pathways [perforin, Fas, or tumor necrosis factor α (TNF-α)] with the Ad vector, Ad5-chloramphenicol acetyl transferase (CAT). Mice were sacrificed at 7–60 days postinfection, and the levels of CAT expression in the liver determined by a quantitative enzymatic assay. When the livers of infected mice were harvested 28 days postinfection, the levels of CAT expression revealed that the effectors most important for the elimination of the Ad vector were TNF-α > Fas > perforin. TNF-α did not have a curative effect on infected hepatocytes, as the administration of TNF-α to infected severe combined immunodeficient mice or to infected cultures in vitro had no specific effect on virus persistence. However, TNF-α-deficient mice demonstrated a striking reduction in the leukocytic infiltration early on in the infection, suggesting that TNF-α deficiency resulted in impaired recruitment of inflammatory cells to the site of inflammation. In addition, the TNF-deficient mice had a significantly reduced humoral immune response to virus infection. These results demonstrate a dominant role of TNF-α in elimination of Ad gene transfer vectors. This result is particularly important because viral proteins that disable TNF-α function have been removed from most Ad vectors, rendering them highly susceptible to TNF-α-mediated elimination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proton/sulfate cotransporters in the plasma membranes are responsible for uptake of the environmental sulfate used in the sulfate assimilation pathway in plants. Here we report the cloning and characterization of an Arabidopsis thaliana gene, AST68, a new member of the sulfate transporter gene family in higher plants. Sequence analysis of cDNA and genomic clones of AST68 revealed that the AST68 gene is composed of 10 exons encoding a 677-aa polypeptide (74.1 kDa) that is able to functionally complement a Saccharomyces cerevisiae mutant lacking a sulfate transporter gene. Southern hybridization and restriction fragment length polymorphism mapping confirmed that AST68 is a single-copy gene that maps to the top arm of chromosome 5. Northern hybridization analysis of sulfate-starved plants indicated that the steady-state mRNA abundance of AST68 increased specifically in roots up to 9-fold by sulfate starvation. In situ hybridization experiments revealed that AST68 transcripts were accumulated in the central cylinder of sulfate-starved roots, but not in the xylem, endodermis, cortex, and epidermis. Among all the structural genes for sulfate assimilation, sulfate transporter (AST68), APS reductase (APR1), and serine acetyltransferase (SAT1) were inducible by sulfate starvation in A. thaliana. The sulfate transporter (AST68) exhibited the most intensive and specific response in roots, indicating that AST68 plays a central role in the regulation of sulfate assimilation in plants.