872 resultados para Particle swarm optimization algorithm PSO


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel framework for probabilistic-based structural assessment of existing structures, which combines model identification and reliability assessment procedures, considering in an objective way different sources of uncertainty, is presented in this paper. A short description of structural assessment applications, provided in literature, is initially given. Then, the developed model identification procedure, supported in a robust optimization algorithm, is presented. Special attention is given to both experimental and numerical errors, to be considered in this algorithm convergence criterion. An updated numerical model is obtained from this process. The reliability assessment procedure, which considers a probabilistic model for the structure in analysis, is then introduced, incorporating the results of the model identification procedure. The developed model is then updated, as new data is acquired, through a Bayesian inference algorithm, explicitly addressing statistical uncertainty. Finally, the developed framework is validated with a set of reinforced concrete beams, which were loaded up to failure in laboratory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lâobjectiu dâaquest projecte que consisteix a elaborar un algoritme dâoptimització que permeti, mitjançant un ajust de dades per mínims quadrats, la extracció dels paràmetres del circuit equivalent que composen el model teòric dâun ressonador FBAR, a partir de les mesures dels paràmetres S. Per a dur a terme aquest treball, es desenvolupa en primer lloc tota la teoria necessària de ressonadors FBAR. Començant pel funcionament i lâestructura, i mostrant especial interès en el modelat dâaquests ressonadors mitjançant els models de Mason, Butterworth Van-Dyke i BVD Modificat. En segon terme, sâestudia la teoria sobre optimització i programació No-Lineal. Un cop sâha exposat la teoria, es procedeix a la descripció de lâalgoritme implementat. Aquest algoritme utilitza una estratègia de múltiples passos que agilitzen l'extracció dels paràmetres del ressonador.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrasound segmentation is a challenging problem due to the inherent speckle and some artifacts like shadows, attenuation and signal dropout. Existing methods need to include strong priors like shape priors or analytical intensity models to succeed in the segmentation. However, such priors tend to limit these methods to a specific target or imaging settings, and they are not always applicable to pathological cases. This work introduces a semi-supervised segmentation framework for ultrasound imaging that alleviates the limitation of fully automatic segmentation, that is, it is applicable to any kind of target and imaging settings. Our methodology uses a graph of image patches to represent the ultrasound image and user-assisted initialization with labels, which acts as soft priors. The segmentation problem is formulated as a continuous minimum cut problem and solved with an efficient optimization algorithm. We validate our segmentation framework on clinical ultrasound imaging (prostate, fetus, and tumors of the liver and eye). We obtain high similarity agreement with the ground truth provided by medical expert delineations in all applications (94% DICE values in average) and the proposed algorithm performs favorably with the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La finalitat d'aquest projecte és la realització d'un estudi comparatiu de l'algoritme basat en una colònia artificial d'abelles, Artificial Bee Colony (ABC), comparat amb un conjunt d'algoritmes fonamentats en el paradigma de la computació evolutiva. S'utilitzarà l'eficàcia a l'hora d'optimitzar diverses funcions com a mesura comparativa. Els algoritmes amb els quals es comparara l'algoritme ABC són: algoritmes genètics, evolució diferencial i optimització amb eixam de partícules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les Mesures de Semblança Quàntica Molecular (MSQM) requereixen la maximització del solapament de les densitats electròniques de les molècules que es comparen. En aquest treball es presenta un algorisme de maximització de les MSQM, que és global en el límit de densitatselectròniques deformades a funcions deltes de Dirac. A partir d'aquest algorisme se'n deriva l'equivalent per a densitats no deformades

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intensity-modulated radiotherapy (IMRT) treatment plan verification by comparison with measured data requires having access to the linear accelerator and is time consuming. In this paper, we propose a method for monitor unit (MU) calculation and plan comparison for step and shoot IMRT based on the Monte Carlo code EGSnrc/BEAMnrc. The beamlets of an IMRT treatment plan are individually simulated using Monte Carlo and converted into absorbed dose to water per MU. The dose of the whole treatment can be expressed through a linear matrix equation of the MU and dose per MU of every beamlet. Due to the positivity of the absorbed dose and MU values, this equation is solved for the MU values using a non-negative least-squares fit optimization algorithm (NNLS). The Monte Carlo plan is formed by multiplying the Monte Carlo absorbed dose to water per MU with the Monte Carlo/NNLS MU. Several treatment plan localizations calculated with a commercial treatment planning system (TPS) are compared with the proposed method for validation. The Monte Carlo/NNLS MUs are close to the ones calculated by the TPS and lead to a treatment dose distribution which is clinically equivalent to the one calculated by the TPS. This procedure can be used as an IMRT QA and further development could allow this technique to be used for other radiotherapy techniques like tomotherapy or volumetric modulated arc therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TyÃn tavoitteena oli kehittää automaattinen optimointijärjestelmä energiayhtiÃn omistamaan pieneen sähkÃn- ja lämmÃntuotantolaitokseen (CHP-laitos). Optimointitarve perustuu energiayhtiÃn sähkÃn hankintaan sähkÃpÃrssistä, kaasun hankintahintaan, kohteen paikallisiin sähkÃ- ja lämpÃkuormituksiin ja muihin laitoksen talouteen vaikuttaviin tekijÃihin. Kehitettävällä optimointijärjestelmällä ontarkoitus tulevaisuudessa hallita useita hajautetun energiantuotannon yksikÃitäkeskitetysti. TyÃssä kehitettiin algoritmi, joka optimoi voimalaitoksen taloutta sähkÃtehoa säätävillä ajomalleilla ja suoralla sähkÃteho-ohjeella. TyÃssä kehitetyn algoritmin tuottamia hyÃtyjä selvitettiin Harjun oppimiskeskuksen CHP-laitoksen mittaushistoriatiedoilla. CHP-laitosten käytÃn optimointiin luotiin keskitettyyn laskentaan ja hajautettuun ohjaukseen perustuva järjestelmä. Se ohjaa CHP-laitoksia reaaliaikaisesti ja ennustaa historiatietoihin perustuvalla aikasarjamallilla laitoksen tulevaa käyttÃä. Optimointijärjestelmän toimivuus ja saatu hyÃty selvitettiin Harjun oppimiskeskuksen CHP-laitoksella vertaamalla mittauksista laskettua toteutunutta hyÃtyä optimointijärjestelmän laskemaan ennustettuun hyÃtyyn.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Teollisuuden tuotannon eri prosessien optimointi on hyvin ajankohtainen aihe. Monet ohjausjärjestelmät ovat ajalta, jolloin tietokoneiden laskentateho oli hyvin vaatimaton nykyisiin verrattuna. TyÃssä esitetään tuotantoprosessi, joka sisältää teräksen leikkaussuunnitelman muodostamisongelman. Valuprosessi on yksi teräksen valmistuksen välivaiheita. Siinä sopivaan laatuun saatettu sula teräs valetaan linjastoon, jossa se jähmettyy ja leikataan aihioiksi. MyÃhemmissä vaiheissa teräsaihioista muokataan pienempiä kokonaisuuksia, tehtaan lopputuotteita. Jatkuvavaletut aihiot voidaan leikata tilauskannasta riippuen monella eri tavalla. Tätä varten tarvitaan leikkaussuunnitelma, jonka muodostamiseksi on ratkaistava sekalukuoptimointiongelma. Sekalukuoptimointiongelmat ovat optimoinnin haastavin muoto. Niitä on tutkittu yksinkertaisempiin optimointiongelmiin nähden vähän. Nykyisten tietokoneiden laskentateho on kuitenkin mahdollistanut raskaampien ja monimutkaisempien optimointialgoritmien käytÃn ja kehittämisen. TyÃssä on käytetty ja esitetty eräs stokastisen optimoinnin menetelmä, differentiaalievoluutioalgoritmi. Tässä tyÃssä esitetään teräksen leikkausoptimointialgoritmi. Kehitetty optimointimenetelmä toimii dynaamisesti tehdasympäristÃssä käyttäjien määrittelemien parametrien mukaisesti. Tyà on osa Syncron Tech Oy:n Ovako Bar Oy Ab:lle toimittamaa ohjausjärjestelmää.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A procedure for compositional characterization of a microalgae oil is presented and applied to investigate a microalgae based biodiesel production process through process simulation. The methodology consists of: proposing a set of triacylglycerides (TAG) present in the oil; assuming an initial TAG composition and simulating the transesterification reaction (UNISIM Design, Honeywell) to obtain FAME characterization values (methyl ester composition); evaluating deviations of experimental from calculated values; minimizing the sum of squared deviations by a non-linear optimization algorithm, with TAG molar fractions as decision variables. Biodiesel from the characterized oil is compared to a rapeseed based biodiesel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tässä diplomityÃssä määritellään biopolttoainetta käyttävän voimalaitoksen käytÃnaikainen tuotannon optimointimenetelmä. Määrittelytyà liittyy MW Powerin MultiPower CHP âvoimalaitoskonseptin jatkokehitysprojektiin. Erilaisten olemassa olevien optimointitapojen joukosta valitaan tarkoitukseen sopiva, laitosmalliin ja kustannusfunktioon perustuva menetelmä, jonka tulokset viedään automaatiojärjestelmään PID-säätimien asetusarvojen muodossa. Prosessin mittaustulosten avulla lasketaan laitoksen energia- ja massataseet, joiden tuloksia käytetään seuraavan optimointihetken lähtÃtietoina. Optimoinnin kohdefunktio on kustannusfunktio, jonka termit ovat voimalaitoksen käytÃstä aiheutuvia tuottoja ja kustannuksia. Prosessia optimoidaan säätimille annetut raja-arvot huomioiden niin, että kokonaiskate maksimoituu. Kun laitokselle kertyy käyttÃikää ja historiadataa, voidaan prosessin optimointia nopeuttaa hakemalla tilastollisesti historiadatasta nykytilanteen olosuhteita vastaava hetki. Kyseisen historian hetken katetta verrataan kustannusfunktion optimoinnista saatuun katteeseen. Paremman katteen antavan menetelmän laskemat asetusarvot otetaan käyttÃÃn prosessin ohjausta varten. Mikäli kustannusfunktion laskenta eikä historiadatan perusteella tehty haku anna paranevaa katetta, niiden laskemia asetusarvoja ei oteta käyttÃÃn. Sen sijaan optimia aletaan hakea deterministisellä optimointialgoritmilla, joka hakee nykyhetken ympäristÃstä paremman katteen antavia säätimien asetusarvoja. SäätÃjärjestelmä on mahdollista toteuttaa myÃs tulevaisuutta ennustavana. TyÃn käytännÃn osuudessa voimalaitosmalli luodaan kahden eri mallinnusohjelman avulla, joista toisella kuvataan kattilan ja toisella voimalaitosprosessin toimintaa. Mallinnuksen tuloksena saatuja prosessiarvoja hyÃdynnetään lähtÃtietoina käyttÃkatteen laskennassa. Kate lasketaan kustannusfunktion perusteella. Tuotoista suurimmat liittyvät sähkÃn ja lämmÃn myyntiin sekä tuotantotukeen, ja suurimmat kustannukset liittyvät investoinnin takaisinmaksuun ja polttoaineen ostoon. Kustannusfunktiolle tehdään herkkyystarkastelu, jossa seurataan katteen muutosta prosessin teknisiä arvoja muutettaessa. Tuloksia vertaillaan referenssivoimalaitoksella suoritettujen verifiointimittausten tuloksiin, ja havaitaan, että tulokset eivät ole täysin yhteneviä. Erot johtuvat sekä mallinnuksen puutteista että mittausten lyhyehkÃistä tarkasteluajoista. Automatisoidun optimointijärjestelmän käytännÃn toteutusta alustetaan määrittelemällä käyttÃÃn otettava optimointitapa, siihen liittyvät säätÃpiirit ja tarvittavat lähtÃtiedot. Projektia tullaan jatkamaan järjestelmän ohjelmoinnilla, testauksella ja virityksellä todellisessa voimalaitosympäristÃssä ja myÃhemmin ennustavan säädÃn toteuttamisella.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this thesis is to develop and generalize further the differential evolution based data classification method. For many years, evolutionary algorithms have been successfully applied to many classification tasks. Evolution algorithms are population based, stochastic search algorithms that mimic natural selection and genetics. Differential evolution is an evolutionary algorithm that has gained popularity because of its simplicity and good observed performance. In this thesis a differential evolution classifier with pool of distances is proposed, demonstrated and initially evaluated. The differential evolution classifier is a nearest prototype vector based classifier that applies a global optimization algorithm, differential evolution, to determine the optimal values for all free parameters of the classifier model during the training phase of the classifier. The differential evolution classifier applies the individually optimized distance measure for each new data set to be classified is generalized to cover a pool of distances. Instead of optimizing a single distance measure for the given data set, the selection of the optimal distance measure from a predefined pool of alternative measures is attempted systematically and automatically. Furthermore, instead of only selecting the optimal distance measure from a set of alternatives, an attempt is made to optimize the values of the possible control parameters related with the selected distance measure. Specifically, a pool of alternative distance measures is first created and then the differential evolution algorithm is applied to select the optimal distance measure that yields the highest classification accuracy with the current data. After determining the optimal distance measures for the given data set together with their optimal parameters, all determined distance measures are aggregated to form a single total distance measure. The total distance measure is applied to the final classification decisions. The actual classification process is still based on the nearest prototype vector principle; a sample belongs to the class represented by the nearest prototype vector when measured with the optimized total distance measure. During the training process the differential evolution algorithm determines the optimal class vectors, selects optimal distance metrics, and determines the optimal values for the free parameters of each selected distance measure. The results obtained with the above method confirm that the choice of distance measure is one of the most crucial factors for obtaining higher classification accuracy. The results also demonstrate that it is possible to build a classifier that is able to select the optimal distance measure for the given data set automatically and systematically. After finding optimal distance measures together with optimal parameters from the particular distance measure results are then aggregated to form a total distance, which will be used to form the deviation between the class vectors and samples and thus classify the samples. This thesis also discusses two types of aggregation operators, namely, ordered weighted averaging (OWA) based multi-distances and generalized ordered weighted averaging (GOWA). These aggregation operators were applied in this work to the aggregation of the normalized distance values. The results demonstrate that a proper combination of aggregation operator and weight generation scheme play an important role in obtaining good classification accuracy. The main outcomes of the work are the six new generalized versions of previous method called differential evolution classifier. All these DE classifier demonstrated good results in the classification tasks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accelerating adoption of electrical technologies in vehicles over the recent years has led to an increase in the research on electrochemical energy storage systems, which are among the key elements in these technologies. The application of electrochemical energy storage systems for instance in hybrid electrical vehicles (HEVs) or hybrid mobile working machines allows tolerating high power peaks, leading to an opportunity to downsize the internal combustion engine and reduce fuel consumption, and therefore, CO2 and other emissions. Further, the application of electrochemical energy storage systems provides an option of kinetic and potential energy recuperation. Presently, the lithium-ion (Li-ion) battery is considered the most suitable electrochemical energy storage type in HEVs and hybrid mobile working machines. However, the intensive operating cycle produces high heat losses in the Li-ion battery, which increase its operating temperature. The Li-ion battery operation at high temperatures accelerates the ageing of the battery, and in the worst case, may lead to a thermal runaway and fire. Therefore, an appropriate Li-ion battery cooling system should be provided for the temperature control in applications such as HEVs and mobile working machines. In this doctoral dissertation, methods are presented to set up a thermal model of a single Li-ion cell and a more complex battery module, which can be used if full information about the battery chemistry is not available. In addition, a non-destructive method is developed for the cell thermal characterization, which allows to measure the thermal parameters at different states of charge and in different points of cell surface. The proposed models and the cell thermal characterization method have been verified by experimental measurements. The minimization of high thermal non-uniformity, which was detected in the pouch cell during its operation with a high C-rate current, was analysed by applying a simplified pouch cell 3D thermal model. In the analysis, heat pipes were incorporated into the pouch cell cooling system, and an optimization algorithm was generated for the estimation of the optimalplacement of heat pipes in the pouch cell cooling system. An analysis of the application of heat pipes to the pouch cell cooling system shows that heat pipes significantly decrease the temperature non-uniformity on the cell surface, and therefore, heat pipes were recommended for the enhancement of the pouch cell cooling system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Afin d'enrichir les données de corpus bilingues parallèles, il peut être judicieux de travailler avec des corpus dits comparables. En effet dans ce type de corpus, même si les documents dans la langue cible ne sont pas l'exacte traduction de ceux dans la langue source, on peut y retrouver des mots ou des phrases en relation de traduction. L'encyclopédie libre Wikipédia constitue un corpus comparable multilingue de plusieurs millions de documents. Notre travail consiste à trouver une méthode générale et endogène permettant d'extraire un maximum de phrases parallèles. Nous travaillons avec le couple de langues français-anglais mais notre méthode, qui n'utilise aucune ressource bilingue extérieure, peut s'appliquer à tout autre couple de langues. Elle se décompose en deux étapes. La première consiste à détecter les paires dâarticles qui ont le plus de chance de contenir des traductions. Nous utilisons pour cela un réseau de neurones entraîné sur un petit ensemble de données constitué d'articles alignés au niveau des phrases. La deuxième étape effectue la sélection des paires de phrases grâce à un autre réseau de neurones dont les sorties sont alors réinterprétées par un algorithme d'optimisation combinatoire et une heuristique d'extension. L'ajout des quelques 560~000 paires de phrases extraites de Wikipédia au corpus d'entraînement d'un système de traduction automatique statistique de référence permet d'améliorer la qualité des traductions produites. Nous mettons les données alignées et le corpus extrait à la disposition de la communauté scientifique.