689 resultados para Paraventricular Hypothalamus
Resumo:
Atrial mechanoreceptors, sensitive to stretch, contribute in regulating heart rate and intravascular volume. The information from those receptors reaches the nucleus tractus solitarius and then the paraventricular nucleus (PVN), known to have a crucial role in the regulation of cardiovascular function. Neurons in the PVN synthesize CRF, AVP, and oxytocin (OT). Stimulation of atrial mechanoreceptors was performed in awake rats implanted with a balloon at the junction of the superior vena cava and right atrium. Plasma ACTH, AVP, and OT concentrations and Fos, CRF, AVP, and OT immunolabeling in the PVN were determined after balloon inflation in hydrated and water-deprived rats. The distension of the balloon increased the plasma ACTH concentrations, which were higher in water-deprived than in hydrated rats (P < 0.05). In addition, the distension in the water-deprived group decreased plasma AVP concentrations (P < 0.05), compared with the respective control group. The distension increased the number of Fos- and double-labeled Fos/CRF neurons in the parvocellular PVN, which was higher in the water-deprived than in the hydrated group (P < 0.01). There was no difference in the Fos expression in magnocellular PVN neurons after distension in hydrated and water-deprived groups, compared with respective controls. In conclusion, parvocellular CRF neurons showed an increase of Fos expression induced by stimulation of right atrial mechanoreceptors, suggesting that CRF participates in the cardiovascular reflex adjustments elicited by volume loading. Activation of CRF neurons in the PVN by cardiovascular reflex is affected by osmotic stimulation.
Resumo:
Purpose: Corticoids have been an option for phimosis treatment since 1993. However, long-term use or repeated cycles pose a concern regarding drug absorption and consequent systemic effects. The aim of this study was to investigate the effect of topical corticoids used in treating phimosis on the hypothalamus-pituitary-adrenal axis in children. Materials and Methods: A total of 31 children were included in the study. Cortisol secretion was evaluated by the measurement of salivary cortisol in saliva samples collected at 9:00 a.m, before starting treatment and after 8 weeks of topical treatment with 0.05% clobetasol propionate. Salivary cortisol was determined by radioimmunoassay. To confirm that use of clobetasol propionate was not detected by the assay, the presence of cortisol circadian rhythm was checked by an extra saliva sample obtained at 11:00 p.m. from 10 children, and was observed to be maintained in all of them. Results: No significant difference in salivary cortisol levels was observed between samples obtained at 9:00 a.m. before starting treatment and after completing treatment when the entire group was analyzed. However, in 2 children the salivary cortisol levels after treatment were lower than the cutoff value (358 ng/dl) assumed to be suggestive of hypothalamus-pituitary-adrenal axis suppression. Conclusions: Topical clobetasol propionate used twice daily for clinical treatment of phimosis does not affect the hypothalamus-pituitary-adrenal axis in most patients. However, salivary cortisol level should be considered as a laboratory marker in long-term treatment or during repeated cycles to detect possible hypothalamus-pituitary-adrenal axis suppression.
Resumo:
Objective: The present study has investigated the effect of blockade of nitric oxide synthesis on cardiovascular autonomic adaptations induced by aerobic physical training using different approaches: 1) double blockade with methylatropine and propranolol; 2) systolic arterial pressure (SAP) and heart rate variability (HRV) by means of spectral analysis; and 3) baroreflex sensitivity. Methods: Male Wistar rats were divided into four groups: sedentary rats (SR); sedentary rats treated with N(omega)-nitro-L-arginine methyl ester (L-NAME) for one week (SRL); rats trained for eight weeks (TR); and rats trained for eight weeks and treated with L-NAME in the last week (TRL). Results: Hypertension and tachycardia were observed in SRL group. Previous physical training attenuated the hypertension in L-NAME-treated rats. Bradycardia was seen in TR and TRL groups, although such a condition was more prominent in the latter. All trained rats had lower intrinsic heart rates. Pharmacological evaluation of cardiac autonomic tonus showed sympathetic predominance in SRL group, differently than other groups. Spectral analysis of HRV showed smaller low frequency oscillations (LF: 0.2-0.75 Hz) in SRL group compared to other groups. Rats treated with L-NAME presented greater LF oscillations in the SAP compared to non-treated rats, but oscillations were found to be smaller in TRL group. Nitric oxide synthesis inhibition with L-NAME reduced the baroreflex sensitivity in sedentary and trained animals. Conclusion: Our results showed that nitric oxide synthesis blockade impaired the cardiovascular autonomic adaptations induced by previous aerobic physical training in rats that might be, at least in part, ascribed to a decreased baroreflex sensitivity. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Objective: To investigate the effect of aerobic physical training on cardiovascular autonomic control in ovariectomized rats using different approaches. Design: Female Wistar rats were divided into four groups: sedentary sham rats (group SSR), trained sham rats (group TSR), sedentary ovariectomized rats (group SOR), and trained ovariectomized rats (group TOR). Animals from the trained groups were submitted to a physical training protocol (swimming) for 12 weeks. Results: Pharmacological evaluation showed that animals from group TSR had an increase in their cardiac vagal tonus compared with the animals from groups SSR and SOR. The analysis of heart rate variability (HRV) showed that groups TSR and SOR had fewer low-frequency oscillations (0.20-0.75 Hz) compared with groups SSR and TOR. When groups TSR and SOR were compared, the former was found to have fewer oscillations. With regard to high-frequency oscillations (0.75-2.5 Hz), group SSR had a reduction compared with the other groups, whereas group TSR had the greatest oscillation compared with groups SOR and TOR, with all values expressed in normalized units. Analysis of HRV was performed after pharmacological blockade, and low-frequency oscillations were found to be predominantly sympathetic in sedentary animals, whereas there was no predominance in trained animals. Conclusion: Ovariectomy did not change the tonic autonomic control of the heart and, in addition, reduced the participation of sympathetic component in cardiac modulation. Physical training, on the other hand, increased the participation of parasympathetic modulation on the HRV, including ovariectomized rats.
Resumo:
Humans and mice with loss-of-function mutations of the genes encoding kisspeptins (Kiss1) or kisspeptin receptor (Kiss1r) are infertile due to hypogonadotropic hypogonadism. Within the hypothalamus, Kiss1 mRNA is expressed in the anteroventral periventricular nucleus (AVPV) and the arcuate nucleus (Arc). In order to better study the different populations of kisspeptin cells we generated Kiss1-Cre transgenic mice. We obtained one line with Cre activity specifically within Kiss1 neurons (line J2-4), as assessed by generating mice with Cre-dependent expression of green fluorescent protein or beta-galactosidase. Also, we demonstrated Kiss1 expression in the cerebral cortex and confirmed previous data showing Kiss1 mRNA in the medial nucleus of amygdala and anterodorsal preoptic nucleus. Kiss1 neurons were more concentrated towards the caudal levels of the Arc and higher leptin-responsivity was observed in the most caudal population of Arc Kiss1 neurons. No evidence for direct action of leptin in AVPV Kiss1 neurons was observed. Me lanocortin fibers innervated subsets of Kiss1 neurons of the preoptic area and Arc, and both populations expressed melanocortin receptors type 4 (MC4R). Specifically in the preoptic area, 18-28% of Kiss1 neurons expressed MC4R. In the Arc, 90% of Kiss1 neurons were glutamatergic, 50% of which also were GABAergic. In the AVPV, 20% of Kiss1 neurons were glutamatergic whereas 75% were GABAergic. The differences observed between the Kiss1 neurons in the preoptic area and the Arc likely represent neuronal evidence for their differential roles in metabolism and reproduction. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
The interaction between the reproductive axis and energy balance suggests that leptin acts as a possible mediator. This hormone acts in the regulation of metabolism, feeding behaviour and reproduction. Animals homozygous for the gene `ob` (ob/ob) are obese and infertile, and these effects are reversed after systemic administration of leptin. Thus, the present study aimed to determine: (i) whether cells that express leptin also express oestrogen receptors of type-alpha (ER-alpha) or -beta (ER-beta) in the medial preoptic area (MPOA) and in the arcuate (ARC), dorsomedial (DMH) and ventromedial hypothalamic nucleus and (ii) whether there is change in the gene and protein expression of leptin in these brain areas in ovariectomised (OVX) animals when oestrogen-primed. Wistar female rats with normal oestrous cycles or ovariectomised oestrogen-primed or vehicle (oil)-primed were utilised. To determine whether there was a co-expression, immunofluorescence was utilised for double staining. Confocal microscopy was used to confirm the co-expression. The technique of real-time polymerase chain reaction and western blotting were employed to analyse gene and protein expression, respectively. The results obtained showed co-expression of leptin and ER-alpha in the MPOA and in the DMH, as well as leptin and ER-beta in the MPOA, DMH and ARC. However, we did not detect leptin in the MPOA, ARC and DMH using western blotting and there was no statistical difference in leptin gene expression in the MPOA, DMH, ARC, pituitary or adipose tissue between OVX rats treated with oestrogen or vehicle. In conclusion, the results obtained in the present study confirm that the brain is also a source of leptin and reveal co-expression of oestrogen receptors and leptin in the same cells from areas related to reproductive function and feeding behaviour. Although these data corroborate the previous evidence obtained concerning the interaction between the action of brain leptin and reproductive function, the physiological relevance of this interaction remains uncertain and additional studies are necessary to elucidate the exact role of central leptin.
Resumo:
Objectives: In this work, we searched for maternal separation effects on serum corticosterone levels and blood neutrophil activity in adult male A/J and C57BL/6 mouse offspring. Methods: 40 male A/J mice and 40 male C57BL/6 mice were divided within each strain into two groups. Mice in the maternal separation group were separated from their mothers (1 h/day) on postnatal days 0-13. Mice in the control group were left undisturbed. On postnatal day 45, blood was drawn from all mice and used to assess neutrophil activity by flow cytometry and serum corticosterone levels by radioimmunoassay. Results: The results showed that each mouse strain responded differently to maternal separation, but in both cases, serum corticosterone levels were affected. In both strains, adult mice that experienced maternal separation showed lower serum corticosterone levels than control mice. In relation to control mice kept together with their mothers, the levels of serum corticosterone were 72.7 and 36.36% lower in A/J and C57BL/6 mice submitted to maternal separation, respectively. The current findings showed that maternal separation increased neutrophil activity in mice after reaching adulthood. The observed effects, although in the same direction, differed between A/J and C57BL/6 mice. Maternal separation increased both the percentage and intensity of phagocytosis in C57BL/6 mice, but had no effects on A/J mice. Furthermore, maternal separation increased basal and propidium iodide-labeled Staphylococcus aureus-induced oxidative burst in A/J mice but did not affect oxidative burst in C57BL/6 mice. Finally, phorbol myristate acetate-induced oxidative burst increased in both strains. Conclusion: These results indicate that early maternal separation increases innate immunity, most likely by modifying hypothalamus-pituitary-adrenal axis activity. This suggests that maternal separation is a good model for stress which produces long-term neuroimmune changes whatever the animal species and strain used. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
Ethnopharmacological relevance: The essential oil (EO) from Cymbopogon citratus (DC) Stapf is reported to have a wide range of biological activities and is widely used in traditional medicine as an infusion or decoction. However, despite this widely use, there are few controlled studies confirming its biological activity in central nervous system. Materials and methods: The anxiolytic-like activity of the EO was investigated in light/dark box (LDB) and marble-burying test (MBT) and the antidepressant activity was investigated in forced-swimming test (FST) in mice. Flumazenil, a competitive antagonist of benzodiazepine binding and the selective 5-HT(1A) receptor antagonist WAY100635 was used in experimental procedures to determine the action mechanism of EO. To exclude any false positive results in experimental procedures, mice were submitted to the rota-rod test. We also quantified some neurotransmitters at specific brain regions after EO oral acute treatment. Results: The present work found anxiolytic-like activity of the EO at the dose of 10 mg/kg in a LDB. Flumazenil, but not WAY100635, was able to reverse the effect of the EO in the LOB, indicating that the EO activity occurs via the GABA(A) receptor-benzodiazepine complex. Only at higher doses did the EO potentiate diethyl-ether-induced sleeping time in mice. In the FST and MBT, EO showed no effect. Finally, the increase in time spent in the light chamber, demonstrated by concomitant treatment with ineffective doses of diazepam (DZP) and the EO, revealed a synergistic effect of the two compounds. The lack of activity after long-term treatment in the LDB test might be related to tolerance induction, even in the DZP-treated group. Furthermore, there were no significant differences between groups after either acute or repeated treatments with the EO in the rota-rod test. Neurochemical evaluation showed no amendments in neurotransmitter levels evaluated in cortex, striatum, pons, and hypothalamus. Conclusions: The results corroborate the use of Cymbopogon citratus in folk medicine and suggest that the anxiolytic-like effect of its EO is mediated by the GABA(A) receptor-benzodiazepine complex. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The moxidectin (MXD) is an antiparasitic drug used in domestic animals. The mechanism of action, in mammals, involves GABA, a neurotransmitter with an important role in the sexual behavior control. Presently, the effects of 0.2 mg/kg therapeutic dose were studied on sexual behavior, sexual motivation, penile erection and central GABA levels. Sexual behavior results showed increased latencies to the first mount and intromission as well as in inter-intromission interval; a reduction in total mounts was detected on the drug post-treatment. No difference was observed between sexual motivation of control and experimental animals. MXD treatment reduced penile erection and hypothalamic GABA levels. The results suggest that MXD reduced sexual behavior and penile erection by an action on the hypothalamic GABA system. Probably, the lack of effects in the motivational test and the increased mount and intromission latencies as well as decreased total mounts could be explained as a consequence of reduced male rat erection process. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The relevance and property of studies related to stress effects on immune function are undisputable. All studies conducted on stress-immune relationships, however, provide from physical and/or psychological stressors. Indeed, as far as it is of our knowledge brain-innate immune responses were not analyzed after anxiogenic-like drugs use. The present experiment was then undertaken to analyze the effects of picrotoxin (0.3, 0.6 and 1.0 mg/kg doses) on behavior, macrophage activity, serum corticosterone and noradrenaline (NE) levels and turnover in the brain of adult mice. Results showed that picrotoxin treatment in mice: (1) decreased motor and rearing activities in an open-field; (2) decreased the number of entries into the plus-maze open-arms and decreased the time spent in the exploration of the plus-maze open-arms; (3) decreased both motor activity and the level of holes exploration in the hole-board; (4) increased the levels of serum corticosterone in dose-dependent way; (5) increased noradrenaline (NE) and MHPG levels and NE turnover in the hypothalamus; and (6) increased Staphylococcus aureus and PMA-induced macrophage oxidative burst. However, and contrary to that reported after physical or psychological stress, this drug induced no effects on macrophage phagocytosis and NE levels and turnover in the frontal cortex. The present results are thus showing that picrotoxin induces some but not all neuro-innate immunity changes previously reported for inescapable foot-shock and psychological stressors in mice. These facts suggest that this chemical stressor triggers CNS pathways that might be somehow different from those fired by inescapable foot-shock and psychological stressors, leading to different neuro-innate immune responses. (C) 2007 Elsevier Ltd. All fights reserved.
Resumo:
Early-life environmental events that disrupt the mother-pup relationship may induce profound long-lasting changes on several behavioral and neuroendocrine systems. The neonatal handling procedure, which involves repeated brief maternal separations followed by experimental manipulations, reduces sexual behavior and induces anovulatory estrous cycles in female rats. On the afternoon of proestrus, neonatally handled females show a reduced surge of luteinizing hormone (LH) and an increased content of gonadotropin-releasing hormone in the medial preoptic area (MPOA). In order to detect the possible causes for the reduced ovulation and sexual behavior, the present study aimed to analyze the effects of neonatal handling on noradrenaline (NA) and nitric oxide (NO) levels in the MPOA on the afternoon of proestrus. Neonatal handling reduced MHPG (NA metabolite) levels and MHPG/NA ratio in the MPOA, indicating decreased NAergic activity. Additionally, neonatal handling decreased NO levels, as measured by the metabolites (NO x), nitrite and nitrate in the same period. We may conclude that the neonatal handling procedure decreased activity of the NAergic and NOergic systems in the MPOA during proestrus, which is involved in the control of LH and FSH secretion, and this may possibly explain the anovulatory estrous cycles and reduced sexual behavior of the neonatally handled female rats. Copyright (c) 2007 S. Karger AG, Basel.
Resumo:
Our aim was to investigate the effect of central NOS inhibition on hypothalamic arginine vasopressin (AVP) gene expression, hormone release and on the cardiovascular response during experimental sepsis. Male Wistar rats were intracerebroventricularly injected with the non-selective NO synthase (NOS) inhibitor (L-NAME) or aminoguanidine, a selective inhibitor of the inducible isoform (iNOS). After 30 min. sepsis was induced by cecal ligation and puncture (CLP) causing an increase in heart rate (HR), as well as a reduction in median arterial pressure (MAP) and AVP expression ratio (AVP(R)), mainly in the supraoptic nucleus. AVP plasma levels (AVP(P)) increased in the early but not in the late phase of sepsis. L-NAME pretreatment increased MAP but did not change HR. It also resulted in an increase in AVP(P) at all time points, except 24 h, when it returned to basal levels. AVP(R), however remained reduced in both nuclei. Aminoguanidine pretreatment resulted in increased MAP in the early phase and higher AVP(R) in the supraoptic, but not in the paraventricular nucleus, while AVP(P) remained elevated at all time points. We suggest that increased central NO production, mainly inducible NOS-derived, reduces AVP gene expression differentially in supraoptic and paraventricular nuclei, and that this may contribute to low AVP plasma levels and hypotension in the late phase of sepsis. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Our aim was to investigate whether neonatal LPS challenge may improve hormonal, cardiovascular response and mortality, this being a beneficial adaptation when adult rats are submitted to polymicrobial sepsis by cecal ligation and puncture (CLP). Fourteen days after birth, pups received an intraperitoneal injection of lipopolysaccharide (LPS; 100 mu g/kg) or saline. After 8-12 weeks, they were submitted to CLP, decapitated 4,6 or 24 h after surgery and blood was collected for vasopressin (AVP), corticosterone and nitrate measurement, while AVP contents were measured in neurohypophysis, supra-optic (SON) and paraventricular (PVN) nuclei. Moreover, rats had their mean arterial pressure (MAP) and heart rate (HR) evaluated, and mortality and bacteremia were determined at 24 h. Septic animals with neonatal LPS exposure had higher plasma AVP and corticosterone levels, and higher c-Fos expression in SON and PVN at 24 h after surgery when compared to saline treated rats. The LPS pretreated group showed increased AVP content in SON and PVN at 6 h, while we did not observe any change in neurohypophyseal AVP content. The nitrate levels were significantly reduced in plasma at 6 and 24 h after surgery, and in both hypothalamic nuclei only at 6 h. Septic animals with neonatal LPS exposure showed increase in MAP during the initial phase of sepsis, but HR was not different from the neonatal saline group. Furthermore, neonatally LPS exposed rats showed a significant decrease in mortality rate as well as in bacteremia. These data suggest that neonatal LPS challenge is able to promote beneficial effects on neuroendocrine and cardiovascular responses to polymicrobial sepsis in adulthood. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Noradrenaline has been shown to modulate the ovarian-steroid feedback on luteinising-hormone (LH) release. However, despite the high amount of evidence accumulated over many years, the role of noradrenaline in LH regulation is still not clearly understood. The present study aimed to further investigate the involvement of noradrenaline in the negative-feedback effect of oestradiol and progesterone on basal LH secretion. In experiment 1, ovariectomised (OVX) rats received a single injection of oil, oestradiol, or progesterone at 09.00-10.00 h and were decapitated 30 or 60 min later. Levels of noradrenaline and its metabolite, 3-methoxy-4-hydroxyphenylglycol (MHPG), were determined in microdissections of the preoptic area (POA) and medial basal hypothalamus-median eminence (MBH-ME) and correlated with LH secretion. Basal LH levels were decreased 30 and 60 min after oestradiol or progesterone injection, and this hormonal response was significantly correlated with a reduction in POA MHPG levels, which reflect noradrenaline release. In addition, noradrenaline levels in the POA were increased, whereas noradrenaline turnover (MHPG/noradrenaline ratio) was decreased 60 min after the injection of both hormones. No effect was found in the MBH-ME. In experiment 2, i.c.v. administration of noradrenaline (60 nmol), performed 15 min before oestradiol or progesterone injection in jugular vein-cannulated OVX rats, completely prevented the ovarian steroid-induced inhibition of LH secretion. The data obtained provide direct evidence that LH secretion in OVX rats is positively regulated by basal noradrenergic activity in the POA, and its reduction appears to play a role in the negative-feedback effect of ovarian steroids on LH secretion in vivo.
Resumo:
Locus coeruleus (LC) is involved in the LHRH regulation by gonadal steroids. We investigated the expression of progesterone and estrogen receptors (PR; ER) in LC neurons of ER alpha (alpha ERKO) or ER beta (beta ERKO) knockout mice, and their wild-type (alpha WT and beta WT). Immunocytochemical studies showed that LC expresses PR and both ERs, although ER beta was more abundant. Estradiol benzoate (EB) decreased ER alpha-positive cells in WT and beta ERKO mice, and progesterone caused a further reduction, whereas none of the steroids influenced ER beta expression. ER beta deletion increased ER alpha while ER alpha deletion did not alter ER beta expression. In both WT mice, EB increased PR expression, which was diminished by progesterone. These steroid effects were also observed in alpha ERKO animals but to a lesser extent, suggesting that ER alpha is partially responsible for the estrogenic induction of PR in LC. Steroid effects on PR in beta ERKO mice were similar to those in the alpha ERKO but to a lesser extent, probably because PR expression was already high in the oil-treated group. This expression seems to be specific of LC neurons, since it was not observed in other areas studied, the preoptic area and ventromedial nucleus of hypothalamus. These findings show that LC in mice expresses alpha ER, beta ER, and PR, and that a balance between them may be critical for the physiological control of reproductive function.