922 resultados para Parametric modeling of repair time
Resumo:
Carbonatites are known to contain the highest concentrations of rare-earth elements (REE) among all igneous rocks. The REE distribution of carbonatites is commonly believed to be controlled by that of the rock forming Ca minerals (i.e., calcite, dolomite, and ankerite) and apatite because of their high modal content and tolerance for the substitution of Ca by light REE (LREE). Contrary to this conjecture, calcite from the Miaoya carbonatite (China), analyzed in situ by laser-ablation inductively-coupled-plasma mass-spectrometry, is characterized by low REE contents (100–260 ppm) and relatively !at chondrite-normalized REE distribution patterns [average (La/Yb)CN=1.6]. The carbonatite contains abundant REE-rich minerals, including monazite and !uorapatite, both precipitated earlier than the REE-poor calcite, and REE-fluorocarbonates that postdated the calcite. Hydrothermal REE-bearing !uorite and barite veins are not observed at Miaoya. The textural and analytical evidence indicates that the initially high concentrations of REE and P in the carbonatitic magma facilitated early precipitation of REE-rich phosphates. Subsequent crystallization of REE-poor calcite led to enrichment of the residual liquid in REE, particularly LREE. This implies that REE are generally incompatible with respect to calcite and the calcite/melt partition coefficients for heavy REE (HREE) are significantly greater than those for LREE. Precipitation of REE-fluorocarbonates late in the evolutionary history resulted in depletion of the residual liquid in LREE, as manifested by the development of HREE-enriched late-stage calcite [(La/Yb)CN=0.7] in syenites associated with the carbonatite. The observed variations of REE distribution between calcite and whole rocks are interpreted to arise from multistage fractional crystallization (phosphates!calcite!REE-!uorocarbonates) from an initially REE-rich carbonatitic liquid.
Resumo:
As all-atom molecular dynamics method is limited by its enormous computational cost, various coarse-grained strategies have been developed to extend the length scale of soft matters in the modeling of mechanical behaviors. However, the classical thermostat algorithm in highly coarse-grained molecular dynamics method would underestimate the thermodynamic behaviors of soft matters (e.g. microfilaments in cells), which can weaken the ability of materials to overcome local energy traps in granular modeling. Based on all-atom molecular dynamics modeling of microfilament fragments (G-actin clusters), a new stochastic thermostat algorithm is developed to retain the representation of thermodynamic properties of microfilaments at extra coarse-grained level. The accuracy of this stochastic thermostat algorithm is validated by all-atom MD simulation. This new stochastic thermostat algorithm provides an efficient way to investigate the thermomechanical properties of large-scale soft matters.
Resumo:
This study unveils causes of accidents in repair, maintenance, alteration and addition (RMAA) work. RMAA work is playing an increasingly important role in developed societies, including Hong Kong. Safety problems associated with RMAA work in Hong Kong has reached an alarming level. In view of rapid expansion of the RMAA sector and rising proportion of accidents in the construction industry, there is a pressing need to investigate causes of RMAA accidents. Structured interviews were conducted with RMAA contractors to explore causes of accidents in the RMAA sector. A two-round Delphi method with 13 safety experts was subsequently employed to verify the interview findings and rank the relative degree of importance for various causes of accidents. Accidents happen in RMAA work due to intersection of reasons. One of the root causes of accidents in RMAA works is low safety awareness of RMAA workers; however, wider organizational and industrial factors are not negligible. This study sheds light on why accidents happen in the RMAA sector. Only when the factors leading to accidents are identified can effective measures be made.
Resumo:
Purpose The repair, maintenance, minor alteration and addition (RMAA) sector has been expanding in many developed cities. Safety problems of the RMAA sector have attracted the attention of many governments. This study has the objectives of comparing the level of safety climate of workers, supervisors and managers in the RMAA sector; and explaining/ predicting the impact of safety climate on injury occurrence of workers, supervisors and managers. Design/methodology/approach A questionnaire survey was administered to RMAA contracting companies in Hong Kong. Findings When comparing the safety climate perception of workers, supervisors and managers in the RMAA sector, the supervisors group had the lowest mean safety climate score. Results showed that a positive workforce safety attitude and acceptance of safety rules and regulations reduced the workers’ likelihood of having injuries. A reasonable production schedule led to a lower probability of supervisors being injured. Management commitment and effective safety management reduced the probability of managers being injured. Originality/value This study revealed variations of safety climate at the different levels in the organizational hierarchy and their varying influence on safety performance of the RMAA sector. Safety of RMAA works could be improved by promulgating specific safety measures at the different hierarchy levels.
Resumo:
This study examines fatalities of repair, maintenance, minor alteration, and addition (RMAA) works which occurred in Hong Kong between January 2000 and October 2011. A total of 119 RMAA fatalities were recorded. Particular emphasis was placed on fall from height accidents as they accounted for the vast majority of RMAA fatal accidents for the period. A cluster analysis was conducted on fall from height fatal cases. The cluster analysis clearly identified three groups of fall from height fatalities: (1) bamboo scaffolders aged between 25 and 34 who fell from external wall/facade in the beginning of weekdays; (2) miscellaneous workers aged between 45 and 54 who fell from other/unknown places in the end of weekdays; and (3) manual labour aged between 35 and 44 who fell at floor level/from floor openings in weekends. Unsafe process and improper procedures were the main unsafe condition leading to fatalities whereas safety belt not properly used was the main unsafe action leading to fatalities. Specific safety interventions were recommended for each of these groups to help avoid these fatalities.
Resumo:
Purpose Managing and maintaining infrastructure assets are one of the indispensible tasks for many government agencies to preserve the nations' economic viability and social welfare. To reduce the expenditures over the life-cycle of an infrastructure asset and extend the period for which the asset performs effectively, proper repair and maintenance are essential. While repair, maintenance, minor alteration and addition (RMAA) sector is expanding in many developed cities, occurrences of fatalities and injuries in this sector are also soaring. The purposes of this paper are to identify and then evaluate the various strategies for improving the safety performance of RMAA works. Design/methodology/approach Semi-structured interviews and two rounds of Delphi survey were conducted for data collection. Findings Raising safety awareness of RMAA workers and selecting contractors with a good record of safety performance are the two most important strategies to improve the safety performance in this sector. Technology innovations and a pay-for-safety scheme are regarded as the two least important strategies. Originality/value The paper highlights possible ways to enhance safety of the rather under-explored RMAA sector in the construction industry.
Resumo:
Due to rapidly diminishing international supplies of fossil fuels, such as petroleum and diesel, the cost of fuel is constantly increasing, leading to higher costs of living, as a result of the significant reliance of many industries on motor vehicles. Many technologies have been developed to replace part or all of a fossil fuel with bio-fuels. One of the dual fuel technologies is fumigation of ethanol in diesel engines, which injects ethanol into the intake air stream of the engine. The advantage of this is that it avoids any costly modification of the engine high pressure diesel injection system, while reducing the volume of diesel required and potentially increasing the power output and efficiency. This paper investigates the performance of a diesel engine, converted to implement ethanol fumigation. The project will use both existing experimental data, along with generating computer modeled results using the program AVL Boost. The data from both experiments and the numerical simulation indicate desirable results for the peak pressure and the indicated mean effective pressure (IMEP). Increase in ethanol substitution resulted in elevated combustion pressure and an increase in the IMEP, while the variation of ethanol injection location resulted in negligible change. These increases in cylinder pressure led to a higher work output and total efficiency in the engine as the ethanol substitution was increased. In comparing the numerical and experimental results, the simulation showed a slight elevation, due to the inaccuracies in the heat release models. Future work is required to improve the combustion model and investigate the effect of the variation of the location of ethanol injection.
Resumo:
This paper presents two novel nonlinear models of u-shaped anti-roll tanks for ships, and their linearizations. In addition, a third simplified nonlinear model is presented. The models are derived using Lagrangian mechanics. This formulation not only simplifies the modeling process, but also allows one to obtain models that satisfy energy-related physical properties. The proposed nonlinear models and their linearizations are validated using model-scale experimental data. Unlike other models in the literature, the nonlinear models in this paper are valid for large roll amplitudes. Even at moderate roll angles, the nonlinear models have three orders of magnitude lower mean square error relative to experimental data than the linear models.
Resumo:
Process models are usually depicted as directed graphs, with nodes representing activities and directed edges control flow. While structured processes with pre-defined control flow have been studied in detail, flexible processes including ad-hoc activities need further investigation. This paper presents flexible process graph, a novel approach to model processes in the context of dynamic environment and adaptive process participants’ behavior. The approach allows defining execution constraints, which are more restrictive than traditional ad-hoc processes and less restrictive than traditional control flow, thereby balancing structured control flow with unstructured ad-hoc activities. Flexible process graph focuses on what can be done to perform a process. Process participants’ routing decisions are based on the current process state. As a formal grounding, the approach uses hypergraphs, where each edge can associate any number of nodes. Hypergraphs are used to define execution semantics of processes formally. We provide a process scenario to motivate and illustrate the approach.
Resumo:
Traffic accidents often cause lane closure, and diminish stability of travel time as well as the level of road services. On the other hand, research on the implementation of ITS services aiming at the reduction of traffic accidents has made considerable progress lately. However there has been little discussion on the benefits obtained by traffic accident reduction from the view point of travel time reliability. Therefore, in this research, relationships between traffic accidents and travel time reliability are examined, and the benefit of traffic accident reduction is calculated based on the scheduling model under travel time uncertainties. The results show the significance of traffic accident reduction for the improvement of travel time reliability.
Resumo:
Cancer is a disease of signal transduction in which the dysregulation of the network of intracellular and extracellular signaling cascades is sufficient to thwart the cells finely-tuned biochemical control mechanisms. A keen interest in the mathematical modeling of cell signaling networks and the regulation of signal transduction has emerged in recent years, and has produced a glimmer of insight into the sophisticated feedback control and network regulation operating within cells. In this review, we present an overview of published theoretical studies on the control aspects of signal transduction, emphasizing the role and importance of mechanisms such as ‘ultrasensitivity’ and feedback loops. We emphasize that these exquisite and often subtle control strategies represent the key to orchestrating ‘simple’ signaling behaviors within the complex intracellular network, while regulating the trade-off between sensitivity and robustness to internal and external perturbations. Through a consideration of these apparent paradoxes, we explore how the basic homeostasis of the intracellular signaling network, in the face of carcinogenesis, can lead to neoplastic progression rather than cell death. A simple mathematical model is presented, furnishing a vivid illustration of how ‘control-oriented’ models of the deranged signaling networks in cancer cells may enucleate improved treatment strategies, including patient-tailored combination therapies, with the potential for reduced toxicity and more robust and potent antitumor activity.
Resumo:
The problem concerning the excitation of high-frequency surface waves (SW) propagating across an external magnetic field at a plasma-metal interface is considered. A homogeneous electric pump field is applied in the direction transverse with respect to the plasma-metal interface. Two high-frequency SW from different frequency ranges of existence and propagating in different directions are shown to be excited in this pump field. The instability threshold pump-field values and increments are obtained for different parameters of the considered waveguide structure. The results associated with saturation of the nonlinear instability due to self-interaction effects of the excited SW are given as well. The results are appropriate for both gaseous and semiconductor plasmas.
Resumo:
A systematic literature review and a comprehensive meta-analysis that combines the findings from existing studies, was conducted in this thesis to analyse the impact of traffic characteristics on crash occurrence. Sensitivity analyses were conducted to investigate the quality, publication bias and outlier bias of the various studies, and the time intervals used to measure traffic characteristics were considered. Based on this comprehensive and systematic review, and the results of the subsequent meta-analysis, major issues in study design, traffic and crash data, and model development and evaluation are discussed.
Resumo:
Intensity Modulated Radiotherapy (IMRT) is a well established technique for delivering highly conformal radiation dose distributions. The complexity of the delivery techniques and high dose gradients around the target volume make verification of the patient treatment crucial to the success of the treatment. Conventional treatment protocols involve imaging the patient prior to treatment, comparing the patient set-up to the planned set-up and then making any necessary shifts in the patient position to ensure target volume coverage. This paper presents a method for calibrating electronic portal imaging device (EPID) images acquired during IMRT delivery so that they can be used for verifying the patient set-up.