949 resultados para Parametric Vibration
Resumo:
Uncertainties in complex dynamic systems play an important role in the prediction of a dynamic response in the mid- and high-frequency ranges. For distributed parameter systems, parametric uncertainties can be represented by random fields leading to stochastic partial differential equations. Over the past two decades, the spectral stochastic finite-element method has been developed to discretize the random fields and solve such problems. On the other hand, for deterministic distributed parameter linear dynamic systems, the spectral finite-element method has been developed to efficiently solve the problem in the frequency domain. In spite of the fact that both approaches use spectral decomposition (one for the random fields and the other for the dynamic displacement fields), very little overlap between them has been reported in literature. In this paper, these two spectral techniques are unified with the aim that the unified approach would outperform any of the spectral methods considered on their own. An exponential autocorrelation function for the random fields, a frequency-dependent stochastic element stiffness, and mass matrices are derived for the axial and bending vibration of rods. Closed-form exact expressions are derived by using the Karhunen-Loève expansion. Numerical examples are given to illustrate the unified spectral approach.
Resumo:
In this paper we incorporate a novel approach to synthesize a class of closed-loop feedback control, based on the variational structure assignment. Properties of a viscoelastic system are used to design an active feedback controller for an undamped structural system with distributed sensor, actuator and controller. Wave dispersion properties of onedimensional beam system have been studied. Efficiency of the chosen viscoelastic model in enhancing damping and stability properties of one-dimensional viscoelastic bar have been analyzed. The variational structure is projected on a solution space of a closed-loop system involving a weakly damped structure with distributed sensor and actuator with controller. These assign the phenomenology based internal strain rate damping parameter of a viscoelastic system to the usual elastic structure but with active control. In the formulation a model of cantilever beam with non-collocated actuator and sensor has been considered. The formulation leads to the matrix identification problem of two dynamic stiffness matrices. The method has been simplified to obtain control system gains for the free vibration control of a cantilever beam system with collocated actuator-sensor, using quadratic optimal control and pole-placement methods.
Resumo:
Control of sound transmission through the structure and reflection from the structure immersed in fluid media impose highly conflicting requirements on the design of the carpeted noise control linings. These requirements become even more stringent if the structure is expected to be moving with considerable speed particularly under intense hydrostatic pressure. Numerous configurations are possible for designing these linings. Therefore, in this paper, a few lining configurations are identified from the literature for parametric study so that the designer is provided with an environment to analyze and design the lining. A scheme of finite element analysis is used to analyze these linings for their acoustic performance. Commercial finite element software, NISA®, is used as a platform to develop a customized environment wherein design parameters of different configurations can be varied with consistency checks and generate the finite element meshes using the 8-noded hexahedral element. Four types of designs proposed and analysed here address the parameters of interest such as the echo reduction and the transmission loss. Study of the effect of different surface distributions of the cavities is carried out. Effect of static pressure on different designs is reported.
Resumo:
In this note, a simplified procedure based on energy consideration, has been developed, for the solution of steady-state vibration of a system with combined viscous and Coulomb friction damping, subjected to frequency in dependent and frequency dependent excitation, which yields results essentially same as the exact solution. The proposed method uses results essentially same as the exact solution. The proposed method uses equivalent damping which assumes that if the damping in a system is small, the total damping effect can be represented by that of an equivalent damper.
Resumo:
In this paper we analyze a novel Micro Opto Electro Mechanical Systems (MOEMS) race track resonator based vibration sensor. In this vibration sensor the straight portion of a race track resonator is located at the foot of the cantilever beam with proof mass. As the beam deflects due to vibration, stress induced refractive change in the waveguide located over the beam lead to the wavelength shift providing the measure of vibration. A wavelength shift of 3.19 pm/g in the range of 280 g for a cantilever beam of 1750μm×450m×20μmhas been obtained. The maximum acceleration (breakdown) for these dimensions is 2900g when a safety factor of 2 is taken into account. Since the wavelength of operation is around 1.55μm hybrid integration of source and detector is possible on the same substrate. Also it is less amenable to noise as wavelength shift provides the sensor signal. This type of sensors can be used for aerospace application and other harsh environments with suitable design.
Resumo:
We propose a parametric stereo coding analysis and synthesis directly in the MDCT domain using an analysis by synthesis parameter estimation. The stereo signal is represented by an equalized sum signal and spatialization parameters. Equalized sum signal and the spatialization parameters are obtained by sub-band analysis in the MDCT domain. The de-correlated signal required for the stereo synthesis is also generated in the MDCT domain. Subjective evaluation test using MUSHRA shows that the synthesized stereo signal is perceptually satisfactory and comparable to the state of the art parametric coders.
Resumo:
In this article, theoretical and the experimental studies are reported on the adaptive control of vibration transmission in a strut system subjected to a longitudinal pulse train excitation. In the control scheme, a magneto-strictive actuator is employed at the downstream transmission point in the secondary path. The actuator dynamics is taken into account. The system boundary parameters are first estimated off-line, and later employed to simulate the system dynamics. A Delayed-X Filtered-E spectral algorithm is proposed and implemented in real time. The underlying mechanics based filter construction allows for the time varying system dynamics to be taken into account. This work should be of interest for active control of vibration and noise transmission in helicopter gearbox support struts and other systems.