1000 resultados para Paramagnetic protein
Resumo:
Oral administration of dry vaccine formulations is acknowledged to offer major clinical and logistical benefits by eliminating the cold chain required for liquid preparations. A model antigen, bovine serum albumin (BSA) was encapsulated in alginate microspheres using aerosolisation. Hydrated microspheres 25 to 65 μm in size with protein loading of 3.3 % w/w were obtained. Environmental scanning electron microscopy indicated a stabilizing effect of encapsulated protein on alginate hydrogels revealed by an increase in dehydration resistance. Freeze drying of alginate microspheres without use of a cryoprotectant resulted in fragmentation and subsequent rapid loss of the majority of the protein load in simulated intestinal fluid in 2 h, whereas intact microspheres were observed following freeze-drying of BSA-loaded microspheres in the presence of maltodextrin. BSA release from freeze-dried preparations was limited to less than 7 % in simulated gastric fluid over 2 h, while 90 % of the protein load was gradually released in simulated intestinal fluid over 10 h. SDS-PAGE analysis indicated that released BSA largely preserved its molecular weight. These findings demonstrate the potential for manufacturing freeze-dried oral vaccines using alginate microspheres.
Resumo:
Chlamydial infections are wide spread in koalas across their range and a solution to this debilitating disease has been sought for over a decade. Antibiotics are the currently accepted therapeutic measure, but are not an effective treatment due to the asymptomatic nature of some infections and a low efficacy rate. Thus, a vaccine would be an ideal way to address this infectious disease threat in the wild. Previous vaccine trials have used a three-dose regimen; however this is very difficult to apply in the field as it would require multiple capture events, which are stressful and invasive processes for the koala. In addition, it requires skilled koala handlers and a significant monetary investment. To overcome these challenges, in this study we utilized a polyphosphazine based poly I:C and a host defense peptide adjuvant combined with recombinant chlamydial major outer membrane protein (rMOMP) antigen to induce long lasting (54 weeks) cellular and humoral immunity in female koalas with a novel single immunizing dose. Immunized koalas produced a strong IgG response in plasma, as well as at mucosal sites. Moreover, they showed high levels of C. pecorum specific neutralizing antibodies in the plasma as well as vaginal and conjunctival secretions. Lastly, Chlamydia-specific lymphocyte proliferation responses were produced against both whole chlamydial elementary bodies and rMOMP protein, over the 12-month period. The results of this study suggest that a single dose rMOMP vaccine incorporating a poly I:C, host defense peptide and polyphosphazine adjuvant is able to stimulate both arms of the immune system in koalas, thereby providing an alternative to antibiotic treatment and/or a three-dose vaccine regime.
Resumo:
Based on protein molecular dynamics, we investigate the fractal properties of energy, pressure and volume time series using the multifractal detrended fluctuation analysis (MF-DFA) and the topological and fractal properties of their converted horizontal visibility graphs (HVGs). The energy parameters of protein dynamics we considered are bonded potential, angle potential, dihedral potential, improper potential, kinetic energy, Van der Waals potential, electrostatic potential, total energy and potential energy. The shape of the h(q)h(q) curves from MF-DFA indicates that these time series are multifractal. The numerical values of the exponent h(2)h(2) of MF-DFA show that the series of total energy and potential energy are non-stationary and anti-persistent; the other time series are stationary and persistent apart from series of pressure (with H≈0.5H≈0.5 indicating the absence of long-range correlation). The degree distributions of their converted HVGs show that these networks are exponential. The results of fractal analysis show that fractality exists in these converted HVGs. For each energy, pressure or volume parameter, it is found that the values of h(2)h(2) of MF-DFA on the time series, exponent λλ of the exponential degree distribution and fractal dimension dBdB of their converted HVGs do not change much for different proteins (indicating some universality). We also found that after taking average over all proteins, there is a linear relationship between 〈h(2)〉〈h(2)〉 (from MF-DFA on time series) and 〈dB〉〈dB〉 of the converted HVGs for different energy, pressure and volume.
Resumo:
Poisoned protein baits comprise a recognized method for controlling tephritid fruit flies in the form of a ‘lure-and-kill’ technique. However, little is known about how a fly's internal protein and carbohydrate levels (i.e. nutritional status) might influence the efficacy of this control. In the present study, the relationships between the internal levels of protein (as measured by total body nitrogen) and carbohydrate (as measured by total body carbon) of the fruit fly Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) are investigated, as well as its foraging behaviours in response to protein, fruit and cue-lure (a male-specific attractant) baits. Small cage behavioural experiments are conducted using flies from cultures of different nutritional status and wild flies sampled from the field during the fruiting cycle of a guava crop. For female flies, increasing total body nitrogen is correlated with decreased protein foraging and increased oviposition activity; increasing total body carbon levels generate the same behavioural changes except that the oviposition response is not significant. For males, there are no significant correlations between changes in total body nitrogen and total body carbon and protein or cue-lure foraging. For wild flies from the guava orchard, almost all of them are sexually mature when entering the crop and, over the entire season, total body nitrogen and total body carbon levels are such that protein hunger is unlikely for most flies. The results infer strongly that the requirements of wild, sexually mature flies for protein are minimal and that flies can readily gain sufficient nutrients from wild sources for their physiological needs. The results offer a mechanistic explanation for the poor response of male and mature female fruit flies to protein bait spray.
Resumo:
In this paper, we aim at predicting protein structural classes for low-homology data sets based on predicted secondary structures. We propose a new and simple kernel method, named as SSEAKSVM, to predict protein structural classes. The secondary structures of all protein sequences are obtained by using the tool PSIPRED and then a linear kernel on the basis of secondary structure element alignment scores is constructed for training a support vector machine classifier without parameter adjusting. Our method SSEAKSVM was evaluated on two low-homology datasets 25PDB and 1189 with sequence homology being 25% and 40%, respectively. The jackknife test is used to test and compare our method with other existing methods. The overall accuracies on these two data sets are 86.3% and 84.5%, respectively, which are higher than those obtained by other existing methods. Especially, our method achieves higher accuracies (88.1% and 88.5%) for differentiating the α + β class and the α/β class compared to other methods. This suggests that our method is valuable to predict protein structural classes particularly for low-homology protein sequences. The source code of the method in this paper can be downloaded at http://math.xtu.edu.cn/myphp/math/research/source/SSEAK_source_code.rar.
Resumo:
The shoot represents the basic body plan in land plants. It consists of a repeated structure composed of stems and leaves. Whereas vascular plants generate a shoot in their diploid phase, non-vascular plants such as mosses form a shoot (called the gametophore) in their haploid generation. The evolution of regulatory mechanisms or genetic networks used in the development of these two kinds of shoots is unclear. TERMINAL EAR1-like genes have been involved in diploid shoot development in vascular plants. Here, we show that disruption of PpTEL1 from the moss Physcomitrella patens, causes reduced protonema growth and gametophore initiation, as well as defects in gametophore development. Leafy shoots formed on ΔTEL1 mutants exhibit shorter stems with more leaves per shoot, suggesting an accelerated leaf initiation (shortened plastochron), a phenotype shared with the Poaceae vascular plants TE1 and PLA2/LHD2 mutants. Moreover, the positive correlation between plastochron length and leaf size observed in ΔTEL1 mutants suggests a conserved compensatory mechanism correlating leaf growth and leaf initiation rate that would minimize overall changes in plant biomass. The RNA-binding protein encoded by PpTEL1 contains two N-terminus RNA-recognition motifs, and a third C-terminus non-canonical RRM, specific to TEL proteins. Removal of the PpTEL1 C-terminus (including this third RRM) or only 16–18 amino acids within it seriously impairs PpTEL1 function, suggesting a critical role for this third RRM. These results show a conserved function of the RNA-binding PpTEL1 protein in the regulation of shoot development, from early ancestors to vascular plants, that depends on the third TEL-specific RRM.
Resumo:
Background: Disulphide bridges are well known to play key roles in stability, folding and functions of proteins. Introduction or deletion of disulphides by site-directed mutagenesis have produced varying effects on stability and folding depending upon the protein and location of disulphide in the 3-D structure. Given the lack of complete understanding it is worthwhile to learn from an analysis of extent of conservation of disulphides in homologous proteins. We have also addressed the question of what structural interactions replaces a disulphide in a homologue in another homologue. Results: Using a dataset involving 34,752 pairwise comparisons of homologous protein domains corresponding to 300 protein domain families of known 3-D structures, we provide a comprehensive analysis of extent of conservation of disulphide bridges and their structural features. We report that only 54% of all the disulphide bonds compared between the homologous pairs are conserved, even if, a small fraction of the non-conserved disulphides do include cytoplasmic proteins. Also, only about one fourth of the distinct disulphides are conserved in all the members in protein families. We note that while conservation of disulphide is common in many families, disulphide bond mutations are quite prevalent. Interestingly, we note that there is no clear relationship between sequence identity between two homologous proteins and disulphide bond conservation. Our analysis on structural features at the sites where cysteines forming disulphide in one homologue are replaced by non-Cys residues show that the elimination of a disulphide in a homologue need not always result in stabilizing interactions between equivalent residues. Conclusion: We observe that in the homologous proteins, disulphide bonds are conserved only to a modest extent. Very interestingly, we note that extent of conservation of disulphide in homologous proteins is unrelated to the overall sequence identity between homologues. The non-conserved disulphides are often associated with variable structural features that were recruited to be associated with differentiation or specialisation of protein function.
Resumo:
Addition of estradiol 17-beta to first trimester human placental minces resulted in an increased synthesis of a protein of apparent molecular weight 45 kDa. The specific involvement of estrogen in the stimulation of this protein was established by demonstrating a reduction in the level of this protein by the addition of CCS 16949 A, an inhibitor of aromatase, a key enzyme in the biosynthesis of estradiol 17-beta and ICI 182,780, an estrogen receptor antagonist. The protein was purified to homogeneity and N-terminal sequencing of two of the internal peptides obtained by enzymatic digestion of the protein, as well as the absence of a free N-terminal indicated that it could be actin. This was confirmed by Western blotting using commercially available actin antiserum. The role of estradiol 17-beta in the stimulation of actin synthesis in human placenta was also established by monitoring the quantitative inhibition of DNase I by actin.
Resumo:
The effect of pH on the unfolding pathway acid the stability of the toxic protein abrin-II have been studied by increasing denaturant concentrations of guanidine hydrochloride and by monitoring the change in 8,1-anilino naphthalene sulfonic acid (ANS) fluorescence upon binding to the hydrophobic sites of the protein. Intrinsic protein fluorescence, far and near UV-circular dichroism (CD) spectroscopy and ANS binding studies reveal that the unfolding of abrin-II occurs through two intermediates at pH 7.2 and one intermediate at pH 4.5. At pH 7.2, the two subunits A and B of abrin-II unfold sequentially. The native protein is more stable at pH 4.5 than at pH 7.2. However, the stability of the abrin-II A-subunit is not affected by a change in pH. These observations may assist in an understanding of the physiologically relevant transmembrane translocation of the toxin.
Resumo:
The conformational stability of the homodimeric pea lectin was determined by both isothermal urea-induced and thermal denaturation in the absence and presence of urea. The denaturation profiles were analyzed to obtain the thermodynamic parameters associated with the unfolding of the protein. The data not only conform to the simple A(2) double left right arrow 2U model of unfolding but also are well described by the linear extrapolation model for the nature of denaturant-protein interactions. In addition, both the conformational stability (Delta G(s)) and the Delta C-p for the protein unfolding is quite high, at about 18.79 kcal/ mol and 5.32 kcal/(mol K), respectively, which may be a reflection of the relatively larger size of the dimeric molecule (M-r 49 000) and, perhaps, a consequent larger buried hydrophobic core in the folded protein. The simple two-state (A(2) double left right arrow 2U) nature of the unfolding process, with the absence of any monomeric intermediate, suggests that the quaternary interactions alone may contribute significantly to the conformational stability of the oligomer-a point that may be general to many oligomeric proteins.
Resumo:
Proteins are polymerized by cyclic machines called ribosomes, which use their messenger RNA (mRNA) track also as the corresponding template, and the process is called translation. We explore, in depth and detail, the stochastic nature of the translation. We compute various distributions associated with the translation process; one of them-namely, the dwell time distribution-has been measured in recent single-ribosome experiments. The form of the distribution, which fits best with our simulation data, is consistent with that extracted from the experimental data. For our computations, we use a model that captures both the mechanochemistry of each individual ribosome and their steric interactions. We also demonstrate the effects of the sequence inhomogeneities of real genes on the fluctuations and noise in translation. Finally, inspired by recent advances in the experimental techniques of manipulating single ribosomes, we make theoretical predictions on the force-velocity relation for individual ribosomes. In principle, all our predictions can be tested by carrying out in vitro experiments.
Resumo:
Due to its remarkable mechanical and biological properties, there is considerable interest in understanding, and replicating, spider silk's stress-processing mechanisms and structure-function relationships. Here, we investigate the role of water in the nanoscale mechanics of the different regions in the spider silk fibre, and their relative contributions to stress processing. We propose that the inner core region, rich in spidroin II, retains water due to its inherent disorder, thereby providing a mechanism to dissipate energy as it breaks a sacrificial amide-water bond and gains order under strain, forming a stronger amide-amide bond. The spidroin I-rich outer core is more ordered under ambient conditions and is inherently stiffer and stronger, yet does not on its own provide high toughness. The markedly different interactions of the two proteins with water, and their distribution across the fibre, produce a stiffness differential and provide a balance between stiffness, strength and toughness under ambient conditions. Under wet conditions, this balance is destroyed as the stiff outer core material reverts to the behaviour of the inner core.
Resumo:
The hemagglutinin (H) protein of Rinderpest virus expressed by a recombinant buculovirus used as a vaccine produced high titres of neutralizing antibody to Rinderpest virus in the vaccinated cattle, comparable to the levels produced by live attenuated vaccine. The immunized cattle were protected against a vaccine-virus challenge, as demonstrated by the failure of development of antibodies to N protein of the vaccine virus. The lack of replication of vaccine virus in the immunized cattle indicated that they are capable of showing a protective response if challenged with a virulent virus.
Resumo:
Ferrocene-conjugated ternary copper(II) complexes [Cu(L)(B)](ClO4)(2), where L is FcCH(2)N(CH2Py)(2) (Fc = (eta(5)-C5H4)Fe-II(eta(5)-C5H5)) and B is a phenanthroline base, viz., 2,2'-bipyridine (bpy, 1), 1, 10-phenanthroline (phen, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 3), and dipyrido[3,2-a:2',3'-c]phenazine (dppz, 4), have been synthesized and characterized by various spectroscopic and analytical techniques. The bpy complex 1, as its hexafluorophosphate salt, has been structurally characterized by X-ray crystallography. The molecular structure shows the copper(II) center having an essentially square-pyramidal coordination geometry in which L with a pendant ferrocenyl (Fc) moiety and bpy show respective tridentate and bidentate modes of binding to the metal center. The complexes are redox active, showing a reversible cyclic voltammetric response of the Fc(+)-Fc couple near 0.5 V vs SCE and a quasi-reversible Cu(II)-Cu(I) couple near 0.0 V. Complexes 2-4 show binding affinity to calf thymus (CT) DNA, giving binding constant (K-b) values in the range of 4.2 x 10(4) to 2.5 x 10(5) M-1. Thermal denaturation and viscometric titration data suggest groove binding and/or a partial intercalative mode of binding of the complexes to CT DNA. The complexes show good binding propensity to the bovine serum albumin (BSA) protein, giving K-BSA values of similar to 10(4) M-1 for the bpy and phen complexes and similar to 10(5) M-1 for the dpq and dppz complexes. Complexes 2-4 exhibit efficient chemical nuclease activity in the presence of 3-mercapto-propionic acid (MPA) as a reducing agent or hydrogen peroxide (H2O2) as an oxidizing agent. Mechanistic studies reveal formation of hydroxyl radicals as the reactive species. The dpq and dppz complexes are active in cleaving supercoiled (SC) pUC19 DNA on photoexposure to visible light of different wavelengths including red light using an argon-krypton mixed gas ion laser. Mechanistic investigations using various inhibitors reveal the fort-nation of hydroxyl radicals in the DNA photocleavage reactions. The dppz complex 4, which shows efficient photoioduced BSA cleavage activity, is a potent multifunctional model nuclease and protease in the chemistry of photodynamic therapy (PDT) of cancer.
Resumo:
Primary microcephaly (MCPH) is an autosomal-recessive congenital disorder characterized by smaller-than-normal brain size and mental retardation. MCPH is genetically heterogeneous with six known loci: MCPH1-MCPH6. We report mapping of a novel locus, MCPH7, to chromosome 1p32.3-p33 between markers D1S2797 and D1S417, corresponding to a physical distance of 8.39 Mb. Heterogeneity analysis of 24 families previously excluded from linkage to the six known MCPH loci suggested linkage of five families (20.83%) to the MCPH7 locus. In addition, four families were excluded from linkage to the MCPH7 locus as well as all of the six previously known loci, whereas the remaining 15 families could not be conclusively excluded or included. The combined maximum two-point LOD score for the linked families was 5.96 at marker D1S386 at theta = 0.0. The combined multipoint LOD score was 6.97 between markers D1S2797 and D1S417. Previously, mutations in four genes, MCPH1, CDK5RAP2, ASPM, and CENPJ, that code for centrosomal proteins have been shown to cause this disorder. Three different homozygous mutations in STIL, which codes for a pericentriolar and centrosomal protein, were identified in patients from three of the five families linked to the MCPH7 locus; all are predicted to truncate the STIL protein. Further, another recently ascertained family was homozygous for the same mutation as one of the original families. There was no evidence for a common haplotype. These results suggest that the centrosome and its associated structures are important in the control of neurogenesis in the developing human brain.