940 resultados para Parallel hot-wire method
Stress analysis in oral obturator prostheses over parallel and tilted implants: photoelastic imaging
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A possible way for increasing the cutting tool life can be achieved by heating the workpiece in order to diminish the shear stress of material and thus decrease the machining forces. In this study, quartz electrical resistances were set around the workpiece for heating it during the turning. In the tests, heat-resistant austenitic alloy steel was used, hardenable by precipitation, mainly used in combustion engine exhaustion valves, among other special applications for industry. The results showed that in the hot machining the cutting tool life can be increased by 340% for the highest cutting speed tested and had a reduction of 205% on workpiece surface roughness, accompanied by a force decrease in relation to conventional turning. In addition, the chips formed in hot turning exhibited a stronger tendency to continuous chip formation indicating less energy spent in material removal process. Microhardness tests performed in the workpieces subsurface layers at 5 m depth revealed slightly higher values in the hot machining than in conventional, showing a tendency toward the formation of compressive residual stress into plastically deformed layer. The hot turning also showed better performance than machining using cutting fluid. Since it is possible to avoid the use of cutting fluid, this machining method can be considered better for the environment and for the human health.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents the design of a high-speed coprocessor for Elliptic Curve Cryptography over binary Galois Field (ECC- GF(2m)). The purpose of our coprocessor is to accelerate the scalar multiplication performed over elliptic curve points represented by affine coordinates in polynomial basis. Our method consists of using elliptic curve parameters over GF(2163) in accordance with international security requirements to implement a bit-parallel coprocessor on field-programmable gate-array (FPGA). Our coprocessor performs modular inversion by using a process based on the Stein's algorithm. Results are presented and compared to results of other related works. We conclude that our coprocessor is suitable for comparing with any other ECC-hardware proposal, since its speed is comparable to projective coordinate designs.
Resumo:
The resistive-type superconducting fault current limiters (RSFCL) prototypes using YBCO-coated conductors have shown current limitation for medium voltage class applications for acting time up to 80 ms. By connecting an air-core reactor in parallel with the RSFCL, thus making an hybrid current limiter, one can extend the acting time for up to 1 s. In this work, we report the performance of a hybrid current limiter subjected to an AC peak fault current of 2 kA during 1 s for which within the first 80 ms the SFCL limits the current concurrently with the air-core reactor, and for the remaining 920 ms, only the air-core reactor limits the current. In order to evaluate the actual conditions for subsequent reconnection of RSFCL to the power grid, the hybrid fault current limiter was tested varying the time interval for recovery from 900 ms and 1.2 s, followed again by the concurrent operation of the hybrid limiter during 1 s (SFCL during 80 ms). From this evaluation test, the recovery time can be measured and compared using the voltage peak generated in superconducting module from the first and second fault test. The recovery time was also determined through the pulsed current method (PCM) on short-length sample test. The results showed that the fault current was limited from 1.9 kA down to 514 A after 1 cycle of 60 Hz frequency, with recovery time lower than 1.2 s for two subsequent fault current tests.
Experimental and numerical study of heat transfer in hot machined workpiece using infrared radiation
Resumo:
One of the greatest problems found in machining is related to the cutting tool wear. A way for increasing the tool life points out to the development of materials more resistant to wear, such as PCBN inserts. However, the unit cost of these tools is considerable high, around 10 to 20 times compared to coated carbide insert, besides its better performance occurs in high speeds requiring modern machine tools. Another way, less studied is the workpiece heating in order to diminish the shear stress material and thus reduce the machining forces allowing an increase of tool life. For understanding the heat transfer influences by conduction in this machining process, a mathematical model was developed to allow a simplified numerical simulation, using the finite element method, in order to determine the temperature profiles inside the workpiece.
Resumo:
The objective of this study was to investigate the role of GnRH on the preimplantation development of mouse embryos in vitro. GnRH-I, GnRH-II, and GnRH agonists: Des-Gly, Des-Trp and histrelin did not improve embryo development. However, treatment with the specific GnRH antagonist SB-75 blocked embryo development at morula stage. The inhibition of embryo development by SB-75 could be rescued by the addition of histrelin. To determine which intracellular signaling cascade is involved following binding of GnRH to the GnRHR, embryos were cultured in the presence of specific PKC (GFX) or PKA (SQ22536) inhibitors. The PKC inhibitor blocked embryo development at a similar stage as SB-75, whereas SQ22536 had an inhibitory effect, diminishing blastocyst formation and hatched rates. There are evidences that GnRH has an essential autocrine effect on mouse embryonic development via GnRHR, probably by activating PKC signaling cascade while the inhibition of the GnRH signaling does not activate apoptotic mechanisms involving caspase-3. In another experiment, development in vitro of embryos from Chinese Meishan (M) and occidental white crossbred (WC) females were investigated after improving the vitrification protocol for pig embryos. Efficient cryopreservation of zona pellucida-intact porcine embryos and studies of the difference among breeds could greatly impact the swine industry. The percentage of embryos surviving 24 h after cryopreservation without lysis or degeneration was higher for M (72%) than WC (44%). However, in vitro development of embryos that survived cryopreservation was not different between M and WC at the expanded (64%) or hatched (22%) blastocyst stages. Developmental rates were significantly higher for control embryos than frozen embryos from both breeds at expanded blastocyst stage, but not at hatched blastocyst stage. Rates of expanded blastocyst formation did not differ between M and WC control embryos (98 and 95%, respectively). With a new procedure to warm vitrified pig embryos, the survival rates may be improved. The optimal stages to vitrify pig embryos using the microdroplet method ranges from late compact morula to early expanded blastocyst. The results suggest that M embryos have a higher capacity to survive the vitrification process than WC embryos. O objetivo do presente estudo foi investigar a importância do GnRH no desenvolvimento embrionário precoce em camundongos. GnRH-I, GnRH-II e os GnRH agonistas: Des-Gly, Des-Trp e histrelina não incrementaram o desenvolvimento embrionário. Entretanto, o tratamento com SB-75, um antagonista específico do GnRH, bloqueou o desenvolvimento embrionário no estádio de mórula. A inibição do desenvolvimento embrionário pelo SB-75 pôde ser revertida com a adição de histrelina. Para determinar a cascata do sinal intracelular desencadeada pela ligação do GnRH com o seu receptor, embriões foram cultivados na presença de inibidores específicos da PKC (GFX) e da PKA (SQ22536). O inibidor da PKC bloqueou o desenvolvimento embrionário em estádio similar ao bloqueio mediado pelo SB- 75, enquanto o SQ22536 teve efeito inibitório diminuindo a formação de blastocisto e taxas de eclosão. Os resultados sugerem que o GnRH tem um efeito autócrino essencial no desenvolvimento embrionário através do GnRHR, provavelmente, ativando a cascata da PKC. Por outro lado, a inibição do sinal do GnRH não ativa mecanismos apoptóticos que involvam caspase-3. Em outro experimento, foi investigado o desenvolvimento in vitro de embriões da raça Meishan (M) e branco cruzado (WC) após vitrificação pelo método microgota. O desenvolvimento de protocolos eficientes para criopreservação de embriões suínos com a zona pelúcida intacta e a avaliação das diferenças entre raças pode ter um significativo impacto na suinocultura. A percentagem de embriões que sobreviveram à criopreservação depois de 24 h foi maior na M (72%) do que na WC (44%). No entanto, o desenvolvimento in vitro dos embriões que sobreviveram à criopreservação não foi diferente entre M e WC nos estádios de blastocisto expandido (64%) ou eclodido (22%). Os índices de desenvolvimento foram significativamente mais altos para os embriões controle do que para os embriões vitrificados nas duas raças no estádio de blastocisto expandido, porém não foram diferentes para o estádio de blastocisto eclodido. A formação de blastocisto expandido não diferiu entre os embriões controle M e WC (98 e 95%, respectivamente). Com o novo procedimento (“hot warm”) para descongelar embriões vitrificados pelo método de microgota, pode-se aumentar dos índices de sobrevivência. Os melhores estádios embrionários para a vitrificação de embriões suínos variam de mórula compacta tardia até blastocisto expandido inicial. Os resultados sugerem que embriões M têm mais capacidade de sobreviver ao processo de vitrificação do que embriões WC.
Resumo:
This paper presents an optimum user-steered boundary tracking approach for image segmentation, which simulates the behavior of water flowing through a riverbed. The riverbed approach was devised using the image foresting transform with a never-exploited connectivity function. We analyze its properties in the derived image graphs and discuss its theoretical relation with other popular methods such as live wire and graph cuts. Several experiments show that riverbed can significantly reduce the number of user interactions (anchor points), as compared to live wire for objects with complex shapes. This paper also includes a discussion about how to combine different methods in order to take advantage of their complementary strengths.
Resumo:
Purpose - The purpose of this paper is to develop an efficient numerical algorithm for the self-consistent solution of Schrodinger and Poisson equations in one-dimensional systems. The goal is to compute the charge-control and capacitance-voltage characteristics of quantum wire transistors. Design/methodology/approach - The paper presents a numerical formulation employing a non-uniform finite difference discretization scheme, in which the wavefunctions and electronic energy levels are obtained by solving the Schrodinger equation through the split-operator method while a relaxation method in the FTCS scheme ("Forward Time Centered Space") is used to solve the two-dimensional Poisson equation. Findings - The numerical model is validated by taking previously published results as a benchmark and then applying them to yield the charge-control characteristics and the capacitance-voltage relationship for a split-gate quantum wire device. Originality/value - The paper helps to fulfill the need for C-V models of quantum wire device. To do so, the authors implemented a straightforward calculation method for the two-dimensional electronic carrier density n(x,y). The formulation reduces the computational procedure to a much simpler problem, similar to the one-dimensional quantization case, significantly diminishing running time.
Resumo:
Since electrode electroactivity and stability depend directly on the nature, morphology, and structure of the material, we have investigated how modifications to the Pechini method during the synthesis of Pt-RuOx/C electrocatalysts affected catalyst activity. The structure and stability of the resulting materials were investigated after their submission to a large number of potential scans and to constant potential for a prolonged time period in sulfuric acid 0.5 mol L-1 and methanol 0.1 mol L-1 solution. DMFC tests were accomplished using membrane electrode assemblies (MEAs) prepared by hot-pressing a pretreated Nafion 117 membrane together with the prepared Pt-RuOx anodes and a Pt cathode (from E-TEK), in order to compare the catalytic activity of the materials prepared by different methods. The stability studies demonstrated that the catalyst whose resin/carbon support mixture was agitated in a balls mill before undergoing heat-treatment was more stable than the other prepared catalysts. The catalysts synthesized with the single resin consisting of Pt and Ru and subjected to ultrasound before heat-treatment furnished the highest power density in the single fuel cell. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.011208jes]
Resumo:
Context. Be stars are rapidly rotating stars with a circumstellar decretion disk. They usually undergo pressure and/or gravity pulsation modes excited by the kappa-mechanism, i.e. an effect of the opacity of iron-peak elements in the envelope of the star. In the Milky Way, p-modes are observed in stars that are hotter than or equal to the B3 spectral type, while g-modes are observed at the B2 spectral type and cooler. Aims. We observed a B0IVe star, HD51452, with the high-precision, high-cadence photometric CoRoT satellite and high-resolution, ground-based HARPS and SOPHIE spectrographs to study its pulsations in great detail. We also used the lower resolution spectra available in the BeSS database. Methods. We analyzed the CoRoT and spectroscopic data with several methods: CLEAN-NG, FREQFIND, and a sliding window method. We also analyzed spectral quantities, such as the violet over red (V/R) emission variations, to obtain information about the variation in the circumstellar environment. We calculated a stellar structure model with the ESTER code to test the various interpretation of the results. Results. We detect 189 frequencies of variations in the CoRoT light curve in the range between 0 and 4.5 c d(-1). The main frequencies are also recovered in the spectroscopic data. In particular we find that HD51452 undergoes gravito-inertial modes that are not in the domain of those excited by the kappa-mechanism. We propose that these are stochastic modes excited in the convective zones and that at least some of them are a multiplet of r-modes (i.e. subinertial modes mainly driven by the Coriolis acceleration). Stochastically excited gravito-inertial modes had never been observed in any star, and theory predicted that their very low amplitudes would be undetectable even with CoRoT. We suggest that the amplitudes are enhanced in HD51452 because of the very rapid stellar rotation. In addition, we find that the amplitude variations of these modes are related to the occurrence of minor outbursts. Conclusions. Thanks to CoRoT data, we have detected a new kind of pulsations in HD51452, which are stochastically excited gravito-inertial modes, probably due to its very rapid rotation. These modes are probably also present in other rapidly rotating hot Be stars.
Resumo:
The anomalies in the anti-Stokes to Stokes intensity ratios in single-molecule surface-enhanced resonance Raman scattering were investigated. Brilliant green and crystal violet dyes were the molecular probes, and the experiments were carried out on an electrochemically activated Ag surface. The results allowed new insights into the origin of these anomalies and led to a new method to confirm the single-molecule regime in surface-enhanced Raman scattering. Moreover, a methodology to estimate the distribution of resonance energies that contributed to the imbalance in the anti-Stokes to Stokes intensity ratios at the electromagnetic hot spots was proposed. This method allowed the local plasmonic resonance energies on the metallic surface to be spatially mapped.
Resumo:
This paper presents a new parallel methodology for calculating the determinant of matrices of the order n, with computational complexity O(n), using the Gauss-Jordan Elimination Method and Chio's Rule as references. We intend to present our step-by-step methodology using clear mathematical language, where we will demonstrate how to calculate the determinant of a matrix of the order n in an analytical format. We will also present a computational model with one sequential algorithm and one parallel algorithm using a pseudo-code.