982 resultados para Paget bone disease
Resumo:
At the end of the 1990s the stock breeding in the Europe was suffering from the animal disease epidemics such as Bovine spongiform encephalopathy (BSE) and foot –and mouth disease. The European Union (EU) tackled to this problem by tightening the legislation of animal by-products. At this point, rendering and fat producing industries faces new challenges, which they have to cope with in a way of trying to find alternatives to their products (animal fats and meat and bone meal). One of the most promising alternatives to utilize these products was to use them in energy production purposes. The purpose of the Thesis was to examine the utilization possibilities of Meat and bone meal (MBM) for energy production. The first part of the Thesis consists of theory part. The theory part includes evaluation of basic properties of MBM as a fertilizer and as a fuel, legislative evaluation and evaluation of different burning techniques. The second part of the Thesis consists of burning tests in Energy laboratory of LUT with different mixtures of peat and MBM. The purpose of the burning tests was to identify co-firing possibilities of peat and MBM and emission- and ash properties for peat and MBM.
Resumo:
Breast cancer that has metastasized to bone is currently an incurable disease, causing significant morbidity and mortality. The aim of this thesis work was to elucidate molecular mechanisms of bone metastasis and thereby gain insights into novel therapeutic approaches. First, we found that L‐serine biosynthesis genes, phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase 1 (PSAT1) and phosphoserine phosphatase (PSPH), were up‐regulated in highly bone metastatic MDA‐MB‐231(SA) cells as compared with the parental breast cancer cell line. Knockdown of serine biosynthesis inhibited proliferation of MDA‐MB‐231(SA) cells, and L‐serine was essential for the formation of bone resorbing osteoclasts. Clinical data demonstrated that high expression of PHGDH and PSAT1 was associated with decreased relapse‐free and overall survival and with features typical of poor outcome in breast cancer. Second, RNA interference screening pointed out heparan sulfate 6‐O‐sulfotransferase 2 (HS6ST2) as a critical gene for transforming growth factor β (TGF‐β)‐induced interleukin 11 (IL‐11) production in MDA‐MB‐231(SA) cells. Exogenous heparan sulfate glycosaminoglycans heparin and K5‐NSOS also inhibited TGF‐β‐induced IL‐11 production in MDA‐MB‐231(SA) cells. Furthermore, K5‐NSOS decreased osteolytic lesion area and tumor burden in bone in mice. Third, we discovered that the microRNAs miR‐204, ‐211 and ‐379 inhibited IL‐11 expression in MDA‐MB‐231(SA) cells through direct targeting of the IL‐11 mRNA. MiR‐379 also inhibited Smad‐mediated signaling. Gene expression profiling of miR‐204 and ‐379 transfected cells indicated that these microRNAs down‐regulate several bone metastasis‐relevant genes, including prostaglandin‐endoperoxide synthase 2 (PTGS2). Taken together, this study identified three potential treatment strategies for bone metastatic breast cancer: inhibition of serine biosynthesis, heparan sulfate glycosaminoglycans and restoration of miR‐204/‐211/‐379.
Resumo:
PURPOSE: To evaluate whether climacteric women undergoing liver transplantation had higher prevalence of decreased bone mass than those without any liver disease. METHODS: A cross-sectional study with 48 women receiving follow-up care at a university hospital in Southeastern Brazil, from February 4th 2009 to January 5th 2011, was conducted. Of these women, 24 were 35 years or older and had undergone liver transplantation at least one year before study entry. The remaining 24 women had no liver disease and their ages and menstrual patterns were similar to those of transplanted patients. Laboratorial tests (follicle-stimulating hormone and estradiol) and bone density measurements of the lumbar spine and femur (equipment Hologic, Discovery WI) were performed. Statistical analysis was carried out by Fisher's exact test, simple Odds Ratio (OR), and multiple logistic regression. RESULTS: Mean age of the women included in the study was 52.8 (±10.7) years-old, 27.1% were premenopausal and 72.9% were peri/postmenopausal. Approximately 14.6% of these women exhibited osteoporosis and 35.4% had low bone mass. The following items were associated with decreased bone mass: being postmenopausal (OR=71.4; 95%CI 3.8 - 1,339.7; p<0.0001), current age over 49 years-old (OR=11.4; 95%CI 2.9 - 44.0; p=0.0002), and serum estradiol levels lower than 44.5 pg/mL (OR=18.3; 95%CI 3.4 - 97.0; p<0.0001). Having a history of liver transplantation was not associated with decreased bone mass (OR=1.4; 95%CI 0.4 - 4.3; p=0.56). CONCLUSION: Liver transplantation was not associated with decreased bone mass in this group of climacteric women.
Resumo:
In order to study possible alterations of the skeleton which might play a role in the pathogenesis of the periodontitis of "cara inchada" in young cattle, ribs from 20 affected calves, 2 to 10 months old, were examined. Electrolytically decalcified longitudinal sections of the costochondral junction and cross sections through the corpus costae, stained with Haematoxylin-Eosin, were studied. In five calves, longitudinal sections of the proximal humerus were examined as well. The status of mineralization was checked by microradiograms. Systemic alteration of the skeleton due to disturbances of mineral metabolism could not be shown in any of the animals. In seven 2 to 4 months old calves, no bone changes were found. The reduced osteogenesis in six 3 to 5 months old calves and the reduced osteogenesis and diminished chondral growth in seven 5 to 10 months old calves are therefore a consequence of the disease. The results show that the development of the alveolar bone was not defective, so this cannot be a determinant factor for the development of the periodontitis of "cara inchada" in cattle.
Resumo:
Due to technical restrictions of the database system the title of the thesis does not show corretly on this page. Numbers in the title are in superscript. Please see the PDF-file for correct title. ---- Osteomyelitis is a progressive inflammatory disease of bone and bone marrow that results in bone destruction due to an infective microorganism, most frequently Staphylococcus aureus. Orthopaedic concern relates to the need for reconstructive and trauma-related surgical procedures in the fast grow¬ing population of fragile, aged patients, who have an increased susceptibility to surgical site infections. Depending on the type of osteomyelitis, infection may be acute or a slowly progressing, low-grade infection. Peri-implant infections lead to implant loosening. The emerging antibiotic resistance of com¬mon pathogens further complicates the situation. With current imaging methods, significant limitations exist in the diagnosing of osteomyelitis and implant-related infections. Positron emission tomography (PET) with a glucose analogue, 18F-fluoro¬deoxyglucose (18F-FDG), seems to facilitate a more accurate diagnosis of chronic osteomyelitis. The method is based on the increased glucose consumption of activated inflammatory cells. Unfortunately, 18F-FDG accumulates also in sterile inflammation regions and causes false-positive findings, for exam¬ple, due to post-operative healing processes. Therefore, there is a clinical need for new, more infection-specific tracers. In addition, it is still unknown why 18F-FDG PET imaging is less accurate in the detec¬tion of periprosthetic joint infections, most frequently due to Staphylococcus epidermidis. This doctoral thesis focused on testing novel PET tracers (68Ga-chloride and 68Ga-DOTAVAP-P1) for early detections of bone infections and evaluated the role of pathogen-related factors in the appli¬cations of 18F-FDG PET in the diagnostics of bone infections. For preclinical models of S. epidermidis and S. aureus bone/implant infections, the significance of the causative pathogen was studied with respect to 18F-FDG uptake. In a retrospective analysis of patients with confirmed bone infections, the significance of the presence or absence of positive bacterial cultures on 18F-FDG uptake was evalu¬ated. 18F-FDG and 68Ga-chloride resulted in a similar uptake in S. aureus osteomyelitic bones. However, 68Ga-chloride did not show uptake in healing bones, and therefore it may be a more-specific tracer in the early post-operative or post-traumatic phase. 68Ga-DOTAVAP-P1, a novel synthetic peptide bind¬ing to vascular adhesion protein 1 (VAP-1), was able to detect the phase of inflammation in healing bones, but the uptake of the tracer was elevated also in osteomyelitis. Low-grade peri-implant infec¬tions due to S. epidermidis were characterized by a low uptake of 18F-FDG, which reflects the virulence of the causative pathogen and the degree of leukocyte infiltration. In the clinical study, no relationship was found between the level of 18F-FDG uptake and the presence of positive or negative bacterial cul¬tures. Thus 18F-FDG PET may help to confirm metabolically active infection process in patients with culture-negative, histologically confirmed, low-grade osteomyelitis.
Resumo:
There are several methods for inducing periodontal disease in animal models, being the bone defect one of the most reported. This study aimed to evaluate this model, through clinical, radiographic, tomographic and histological analyzes, thus providing standardized data for future regenerative works. Twelve dogs were subjected to the induction protocol. In a first surgical procedure, a mucoperiosteal flap was made on the buccal aspect of the right third and fourth premolars and a defect was produced exposing the furcation and mesial and distal roots, with dimensions: 5mm coronoapical, 5mm mesiodistal, and 3mm buccolingual. Periodontal ligament and cementum were curetted and the defect was filled with molding polyester, which was removed after 21 days on new surgical procedure. Clinical and radiographic examinations were performed after the two surgeries and before the collection of parts for dental tomography and histological analysis. All animals showed grade II furcation exposure in both teeth. Clinical attachment level increased after induction. Defect size did not change for coronoapical and buccolingual measurements, while mesiodistal size was significantly higher than at the time of defect production. Radiographic analysis showed decreased radiopacity and discontinuity of lamina dura in every tooth in the furcation area. The horizontal progression of the disease was evident in micro-computed tomography and defect content in the histological analysis. Therefore, it is concluded that this method promotes the induction of periodontal disease in dogs in a standardized way, thus being a good model for future work.
Resumo:
A retrospective study of the epidemiological and clinic-pathological aspects of cattle and buffaloes with degenerative joint disease (DJD) was conducted in the state of Pará, Brazil. From 1999 to 2014, eleven cattle and 24 buffaloes were evaluated. All the treated animals with suspected DJD underwent a clinical examination of the musculoskeletal system. In seven cattle and eight buffaloes with clinical signs of the disease postmortem examination was performed. The common clinical signs observed in both species were chronic lameness, stiff gait, postural changes, audible crackles in the affected limb, prolonged recumbency, difficulty in getting up and progressive weight loss. The lesions observed at necropsy were: irregular articular surfaces, erosion of the articular cartilage and the underlying bone tissue, and proliferation of the periarticular bone tissue with formation of osteophytes. The most affected joints in cattle and buffaloes wereof the hind limb. In buffaloes, the main predisposing factor to the onset of DJD was phosphorus deficiency. In cattle, defects of the anatomical conformation of the hind limbs, chronic trauma due to the activities performed, such as semen collection, and advanced age possibly contributed to the emergence of the disease.
Resumo:
The purpose of the present study was to evaluate the mixed lymphocyte culture as a predictive assay of acute and chronic graft-versus-host disease (GVHD). We studied 153 patients who received a first bone marrow transplantation from human leukocyte antigen-identical siblings. Acute GVHD was observed in 26 of 128 (20.3%) patients evaluated and chronic GVHD occurred in 60 of 114 (52.6%). One-way mixed lymphocyte culture (MLC) assays were performed by the standard method. MLC results are reported as the relative response (RR) from donor against patient cells. The responses ranged from -47.0 to 40.7%, with a median of 0.5%. The Kaplan-Meier probability of developing GVHD was determined for patients with positive and negative MLC. There was no significant difference in incidence of acute GVHD between the groups studied. However, the incidence of chronic GVHD was higher in recipients with RR >4.5% than in those with RR <=4.5%. The Cox Proportional Hazards model was used to examine the effect of MLC levels on incidence of chronic GVHD, while adjusting for the potential confounding effect of others suspected or observed risk factors. The relative risk of chronic GVHD was 2.5 for patients with positive MLC (RR >4.5%), 2.9 for those who received peripheral blood progenitor cells as a graft, and 2.2 for patients who developed previous acute GVHD. MLC was not useful for predicting acute GVHD, but MLC with RR >4.5% associated with other risk factors could predict the development of chronic GVHD, being of help for the prevention and/or treatment of this late complication.
Resumo:
Osteoporosis is a multifactorial disease with great impact on morbidity and mortality mainly in postmenopausal women. Although it is recognized that factors related to life-style and habits may influence bone mass formation leading to greater or lower bone mass, more than 85% of the variation in bone mineral density (BMD) is genetically determined. The collagen type I alpha 1 (COLIA1) gene is a possible risk factor for osteoporosis. We studied a population of 220 young women from the city of São Paulo, Brazil, with respect to BMD and its correlation with both COLIA1 genotype and clinical aspects. The distribution of COLIA1 genotype SS, Ss and ss in the population studied was 73.6, 24.1 and 2.3%, respectively. No association between these genotypes and femoral or lumbar spine BMD was detected. There was a positive association between lumbar spine BMD and weight (P<0.0001), height (P<0.0156), and body mass index (BMI) (P<0.0156), and a negative association with age at menarche (P<0.0026). There was also a positive association between femoral BMD and weight (P<0.0001), height (P<0.0001), and BMI (P<0.0001), and a negative correlation with family history for osteoporosis (P<0.041). There was no association between the presence of allele s and reduced BMD. We conclude that a family history of osteoporosis and age at menarche are factors that may influence bone mass in our population.
Resumo:
We evaluated spine bone mineral density (BMD) in Brazilian children with juvenile systemic lupus erythematosus (JSLE) in order to detect potential predictors of reduction in bone mass. A cross-sectional study of BMD at the lumbar spine level (L2-L4) was conducted on 16 female JSLE patients aged 6-17 years. Thirty-two age-matched healthy girls were used as control. BMD at the lumbar spine was measured by dual-energy X-ray absorptiometry. Weight, height and pubertal Tanner stage were determined in patients and controls. Disease duration, mean daily steroid doses, mean cumulative steroid doses and JSLE activity measured by the systemic lupus erythematosus disease activity index (SLEDAI) were determined for all JSLE patients based on their medical charts. All parameters were used as potential determinant factors for bone loss. Lumbar BMD tended to be lower in the JSLE patients, however, this difference was not statistically significant (P = 0.10). No significant correlation was observed in JSLE girls between BMD and age, height, Tanner stage, disease duration, corticosteroid use or disease activity. We found a weak correlation between BMD and weight (r = 0.672). In the JSLE group we found no significant parameters to correlate with reduced bone mass. Disease activity and mean cumulative steroid doses were not related to BMD values. We did not observe reduced bone mass in female JSLE.
Resumo:
The analysis of chromosomal abnormalities is important for the study of hematological neoplastic disorders since it facilitates classification of the disease. The ability to perform chromosome analysis of cryopreserved malignant marrow or peripheral blast cells is important for retrospective studies. In the present study, we compared the karyotype of fresh bone marrow cells (20 metaphases) to that of cells stored with a simplified cryopreservation method, evaluated the effect of the use of granulocyte-macrophage colony-stimulating factor (GM-CSF) as an in vitro mitotic index stimulator, and compared the cell viability and chromosome morphology of fresh and cryopreserved cells whenever possible (sufficient metaphases for analysis). Twenty-five bone marrow samples from 24 patients with hematological disorders such as acute myeloid leukemia, acute lymphoblastic leukemia, myelodysplastic syndrome, chronic myeloid leukemia, megaloblastic anemia and lymphoma (8, 3, 3, 8, 1, and 1 patients, respectively) were selected at diagnosis, at relapse or during routine follow-up and one sample was obtained from a bone marrow donor after informed consent. Average cell viability before and after freezing was 98.8 and 78.5%, respectively (P < 0.05). Cytogenetic analysis was successful in 76% of fresh cell cultures, as opposed to 52% of cryopreserved samples (P < 0.05). GM-CSF had no proliferative effect before or after freezing. The morphological aspects of the chromosomes in fresh and cryopreserved cells were subjectively the same. The present study shows that cytogenetic analysis of cryopreserved bone marrow cells can be a reliable alternative when fresh cell analysis cannot be done, notwithstanding the reduced viability and lower percent of successful analysis that are associated with freezing.
Resumo:
The objective of this thesis was to identify the determinants of bone strength and predictors of hip fracture in representative samples of Finnish adults. A secondary objective was to construct a simple multifactorial model for hip fracture prediction over a 10-year follow-up period. The study was based on the Health 2000 Survey conducted during 2000 to 2001 (men and women aged 30 years or over, n=6 035) and the Mini-Finland Health Survey conducted during 1978 to 1980 (women aged 45 years or over, n=2 039). Study subjects participated in health interviews and comprehensive health examination. In the Health 2000 Survey, bone strength was assessed by means of calcaneal quantitative ultrasound (QUS). The follow-up information about hip fractures was drawn from the National Hospital Discharge Register. In this study, age, weight, height, serum 25-hydroxyvitamin D (S-25(OH)D), physical activity, smoking and alcohol consumption as well as menopause and eventual HRT in women were found to be associated with calcaneal broadband ultrasound attenuation (BUA) and speed of sound (SOS). Parity was associated with a decreased risk of hip fracture in postmenopausal women. Age, height, weight or waist circumference, quantitative ultrasound index (QUI), S-25(OH)D and fall-related factors, such as maximal walking speed, Parkinson’s disease, and the number of prescribed CNS active medication were significant independent predictors of hip fracture. At the population level, the incremental value of QUS appeared to be minor in hip fracture prediction when the fall-related risk factors were taken into account. A simple multifactorial model for hip fracture prediction presented in this study was based on readily available factors (age, gender, height, waist circumference, and fallrelated factors). Prospective studies are needed to test this model in patient-based study populations.
Resumo:
We measured bone mineral density (BMD) in girls with juvenile dermatomyositis (JDM) considering multiple factors in order to determine if it could be used as a predictor of reduction in bone mass. A cross-sectional study of lumbar spine BMD (L2-L4) was conducted on 10 girls aged 7-16 years with JDM. A group of 20 age-matched healthy girls was used as control. Lumbar spine BMD was measured by dual-energy X-ray absorptiometry. Weight, height and pubertal Tanner stage were determined in all patients and controls. Duration of disease and mean daily and cumulative steroid doses were calculated for all patients on the basis of their medical charts. JDM activity was determined on the basis of the presence of muscle weakness, cutaneous vasculitis and/or elevation of serum concentration of one or more skeletal muscle enzymes. Seven patients demonstrated osteopenia or osteoporosis. Lumbar BMD was significantly lower in the JDM patients than the age-matched healthy control girls (0.712 vs 0.878, respectively; Student t-test, P = 0.041). No significant correlation between BMD and age, height, Tanner stage, disease duration, corticosteroid use, or disease activity was observed in JDM girls, but a correlation was observed between BMD and weight (Pearson's correlation coefficient, r = 0.802). Patients with JDM may be at risk for a significant reduction in BMD that might contribute to further skeletal fragility. Our results suggest that reduced bone mass in JDM may be related to other intrinsic mechanisms in addition to steroid treatment and some aspects of the disease itself may contribute to this condition.
Resumo:
Human cytomegalovirus (CMV) infection is common in most people but nearly asymptomatic in immunocompetent individuals. After primary infection the virus persists throughout life in a latent form in a variety of tissues, particularly in precursor cells of the monocytic lineage. CMV reinfection and occurrence of disease are associated with immunosuppressive conditions. Solid organ and bone marrow transplant patients are at high risk for CMV disease as they undergo immunosuppression. Antiviral treatment is effective in controlling viremia, but 10-15% of infected patients can experience CMV disease by the time the drug is withdrawn. In addition, long-term antiviral treatment leads to bone marrow ablation and renal toxicity. Furthermore, control of chronic CMV infection in transplant recipients appears to be dependent on the proper recovery of cellular immunity. Recent advances in the characterization of T-cell functions and identification of distinct functional signatures of T-cell viral responses have opened new perspectives for monitoring transplant individuals at risk of developing CMV disease.
Resumo:
Osteoporosis and atherosclerosis are chronic degenerative diseases which have been considered to be independent and whose common characteristic is increasing incidence with age. At present, growing evidence indicates the existence of a correlation between cardiovascular disease and osteoporosis, irrespective of age. The morbidity and mortality of osteoporosis is mainly related to the occurrence of fractures. Atherosclerosis shows a high rate of morbidity and especially mortality because of its clinical repercussions such as angina pectoris, acute myocardial infarction, stroke, and peripheral vascular insufficiency. Atherosclerotic disease is characterized by the accumulation of lipid material in the arterial wall resulting from autoimmune and inflammatory mechanisms. More than 90% of these fatty plaques undergo calcification. The correlation between osteoporosis and atherosclerosis is being established by studies of the underlying physiopathological mechanisms, which seem to coincide in many biochemical pathways, and of the risk factors for vascular disease, which have also been associated with a higher incidence of low-bone mineral density. In addition, there is evidence indicating an action of antiresorptive drugs on the reduction of cardiovascular risks and the effect of statins, antihypertensives and insulin on bone mass increase. The mechanism of arterial calcification resembles the process of osteogenesis, involving various cells, proteins and cytokines that lead to tissue mineralization. The authors review the factors responsible for atherosclerotic disease that correlate with low-bone mineral density.