264 resultados para PWM


Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the development of communication systems such as Internet of Things, integrating communication with power supplies is an attractive solution to reduce supply cost. This paper presents a novel method of power/signal dual modulation (PSDM), by which signal transmission is integrated with power conversion. This method takes advantage of the intrinsic ripple initiated in switch mode power supplies as signal carriers, by which cost-effective communications can be realized. The principles of PSDM are discussed, and two basic dual modulation methods (specifically PWM/FSK and PWM/PSK) are concluded. The key points of designing a PWM/FSK system, including topology selection, carrier shape, and carrier frequency, are discussed to provide theoretical guidelines. A practical signal modulation-demodulation method is given, and a prototype system provides experimental results to verify the effectiveness of the proposed solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

System efficiency and cost effectiveness are of critical importance for photovoltaic (PV) systems. This paper addresses the two issues by developing a novel three-port dc-dc converter for stand-alone PV systems, based on an improved Flyback-Forward topology. It provides a compact single-unit solution with a combined feature of optimized maximum power point tracking (MPPT), high step-up ratio, galvanic isolation, and multiple operating modes for domestic and aerospace applications. A theoretical analysis is conducted to analyze the operating modes followed by simulation and experimental work. This paper is focused on a comprehensive modulation strategy utilizing both PWM and phase-shifted control that satisfies the requirement of PV power systems to achieve MPPT and output voltage regulation. A 250-W converter was designed and prototyped to provide experimental verification in term of system integration and high conversion efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increase in the efficiency of photo-voltaic systems has been the object of various studies the past few years. One possible way to increase the power extracted by a photovoltaic panel is the solar tracking, performing its movement in order to follow the sun’s path. One way to activate the tracking system is using an electric induction motor, which should have sufficient torque and low speed, ensuring tracking accuracy. With the use of voltage source inverters and logic devices that generate the appropriate switching is possible to obtain the torque and speed required for the system to operate. This paper proposes the implementation of a angular position sensor and a driver to be applied in solar tracker built at a Power Electronics and Renewable Energies Laboratory, located in UFRN. The speed variation of the motor is performed via a voltage source inverter whose PWM command to actuate their keys will be implemented in an FPGA (Field Programmable Gate Array) device and a TM4C microcontroller. A platform test with an AC induction machine of 1.5 CV was assembled for the comparative testing. The angular position sensor of the panel is implemented in a ATMega328 microcontroller coupled to an accelerometer, commanded by an Arduino prototyping board. The solar position is also calculated by the microcontroller from the geographic coordinates of the site where it was placed, and the local time and date obtained from an RTC (Real-Time Clock) device. A prototype of a solar tracker polar axis moved by a DC motor was assembled to certify the operation of the sensor and to check the tracking efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In questa tesi viene elaborata un'applicazione ultra-low power (ULP) basata su microcontrollore, per implementare la procedura di controllo di diversi circuiti di un tag RFID. Il tag preso in considerazione è pensato per lavorare in assenza di batteria, da cui la necessita' di ridurre i consumi di potenza. La sua attivazione deve essere inoltre comandata attraverso un'architettura Wake up Radio (WuR), in cui un segnale di controllo radio indirizza e attiva il circuito. Nello specifico, la rete di decodifica dell'indirizzo è stata realizzata mediante il modulo di comunicazione seriale del microcontrollore. Nel Capitolo 1 verrà introdotto il tema dell'Energy Harvesting. Nel Capitolo 2 verrà illustrata l'architettura del sistema nel suo complesso. Nel Capitolo 3 verrà spiegato dettagliatamente il funzionamento del microcontrollore scelto. Il Capitolo 4 sarà dedicato al firmware implementato per svolgere le operazioni fondamentali imputate al micro per i compiti di controllo. Verrà inoltre introdotto il codice VHDL sviluppato per emulare l'output del modulo WuR mediante un FPGA della famiglia Cyclone II. Nel Capitolo 5 verrà presentata una stima dei consumi del microcontrollore in funzione dei parametri di configurazione del sistema. Verrà inoltre effettuato un confronto con un altro microcontrollore che in alcune condizioni potrebbe rappresentare iun'alternativa valida di progetto. Nei Capitoli 6 e 7 saranno descritti possibili sviluppi futuri e conclusioni del progetto. Le specifiche di progetto rilevanti della tesi sono: 1. minimo consumo energetico possibile del microcontrollore ULP 2. elevata rapidità di risposta per la ricezione dei tag, per garantire la ricezione di un numero maggiore possibile di indirizzi (almeno 20 letture al secondo), in un range di tempo limitato 3. generazione di un segnale PWM a 100KHz di frequenza di commutazione con duty cycle 50% su cui basare una modulazione in back-scattering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work intent to study the motive power provided by the plane linear induction motor, in a lock condition. It uses a method of imposition of the electric current to the stator via a frequency convertor PWM driven by a refed platform. The reading of the motive power was performed by a load cell using an electronic circuit for reading and conditioning of the signal. Aiming a complete analysis of the linear motor, it was performed a computational modeling that employs all relevant parameters to the study of the locked machine. At the end it was held a theoric-experimental confrontation that evaluated the effectiveness of the proposed method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A DSP implementation of Space Vector PWM (SVPWM) using constant V/Hz control for the open winding doubly-fed generator is proposed. This control of SVPWM modulation mode and open winding structure combination has the high voltage utilization ratio, greatly improves the control precision of the system, and reduces the stator winding output current distortion rate, though the complexity of the system is increased. This paper describes the basic principle of SVPWM and discusses the particularity of SVPWM waveform generated by hybrid vector under the condition of open winding. This method is applied to a state of doubly-fed wind power generator. The experimental verification shows that this control method can make the output voltage amplitude of the doubly-fed induction generator be 380V and the frequency be 50Hz by using of TMS32028335 chip based on constant V/Hz control of symmetric SVPWM modulation wave.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Automação e Eletrotécnica Ramo de Automação e Eletrónica Industrial

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence of non-linear loads at a point in the distribution system may deform voltage waveform due to the consumption of non-sinusoidal currents. The use of active power filters allows significant reduction of the harmonic content in the supply current. However, the processing of digital control structures for these filters may require high performance hardware, particularly for reference currents calculation. This work describes the development of hardware structures with high processing capability for application in active power filters. In this sense, it considers an architecture that allows parallel processing using programmable logic devices. The developed structure uses a hybrid model using a DSP and an FPGA. The DSP is used for the acquisition of current and voltage signals, calculation of fundamental current related controllers and PWM generation. The FPGA is used for intensive signal processing, such as the harmonic compensators. In this way, from the experimental analysis, significant reductions of the processing time are achieved when compared to traditional approaches using only DSP. The experimental results validate the designed structure and these results are compared with other ones from architectures reported in the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is on modeling and simulation for an offshore wind system equipped with a semi-submersible floating platform, a wind turbine, a permanent magnet synchronous generator, a multiple point clamped four level or five level full-power converter, a submarine cable and a second order filter. The drive train is modeled by three mass model considering the resistant stiffness torque, structure and tower in deep water due to the moving surface elevation. The system control uses PWM by space vector modulation associated with sliding mode and proportional integral controllers. The electric energy is injected into the electric grid either by an alternated current link or by a direct current link. The model is intend to be a useful tool for unveil the behavior and performance of the offshore wind system, especially for the multiple point clamped full-power converter, under normal operation or under malfunctions.