833 resultados para PROBABILITY REPRESENTATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study introduces two new alternatives for global response sensitivity analysis based on the application of the L-2-norm and Hellinger's metric for measuring distance between two probabilistic models. Both the procedures are shown to be capable of treating dependent non-Gaussian random variable models for the input variables. The sensitivity indices obtained based on the L2-norm involve second order moments of the response, and, when applied for the case of independent and identically distributed sequence of input random variables, it is shown to be related to the classical Sobol's response sensitivity indices. The analysis based on Hellinger's metric addresses variability across entire range or segments of the response probability density function. The measure is shown to be conceptually a more satisfying alternative to the Kullback-Leibler divergence based analysis which has been reported in the existing literature. Other issues addressed in the study cover Monte Carlo simulation based methods for computing the sensitivity indices and sensitivity analysis with respect to grouped variables. Illustrative examples consist of studies on global sensitivity analysis of natural frequencies of a random multi-degree of freedom system, response of a nonlinear frame, and safety margin associated with a nonlinear performance function. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In big data image/video analytics, we encounter the problem of learning an over-complete dictionary for sparse representation from a large training dataset, which cannot be processed at once because of storage and computational constraints. To tackle the problem of dictionary learning in such scenarios, we propose an algorithm that exploits the inherent clustered structure of the training data and make use of a divide-and-conquer approach. The fundamental idea behind the algorithm is to partition the training dataset into smaller clusters, and learn local dictionaries for each cluster. Subsequently, the local dictionaries are merged to form a global dictionary. Merging is done by solving another dictionary learning problem on the atoms of the locally trained dictionaries. This algorithm is referred to as the split-and-merge algorithm. We show that the proposed algorithm is efficient in its usage of memory and computational complexity, and performs on par with the standard learning strategy, which operates on the entire data at a time. As an application, we consider the problem of image denoising. We present a comparative analysis of our algorithm with the standard learning techniques that use the entire database at a time, in terms of training and denoising performance. We observe that the split-and-merge algorithm results in a remarkable reduction of training time, without significantly affecting the denoising performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we have proposed an anomaly detection algorithm based on Histogram of Oriented Motion Vectors (HOMV) 1] in sparse representation framework. Usual behavior is learned at each location by sparsely representing the HOMVs over learnt normal feature bases obtained using an online dictionary learning algorithm. In the end, anomaly is detected based on the likelihood of the occurrence of sparse coefficients at that location. The proposed approach is found to be robust compared to existing methods as demonstrated in the experiments on UCSD Ped1 and UCSD Ped2 datasets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human detection is a complex problem owing to the variable pose that they can adopt. Here, we address this problem in sparse representation framework with an overcomplete scale-embedded dictionary. Histogram of oriented gradient features extracted from the candidate image patches are sparsely represented by the dictionary that contain positive bases along with negative and trivial bases. The object is detected based on the proposed likelihood measure obtained from the distribution of these sparse coefficients. The likelihood is obtained as the ratio of contribution of positive bases to negative and trivial bases. The positive bases of the dictionary represent the object (human) at various scales. This enables us to detect the object at any scale in one shot and avoids multiple scanning at different scales. This significantly reduces the computational complexity of detection task. In addition to human detection, it also finds the scale at which the human is detected due to the scale-embedded structure of the dictionary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Space time cube representation is an information visualization technique where spatiotemporal data points are mapped into a cube. Information visualization researchers have previously argued that space time cube representation is beneficial in revealing complex spatiotemporal patterns in a data set to users. The argument is based on the fact that both time and spatial information are displayed simultaneously to users, an effect difficult to achieve in other representations. However, to our knowledge the actual usefulness of space time cube representation in conveying complex spatiotemporal patterns to users has not been empirically validated. To fill this gap, we report on a between-subjects experiment comparing novice users' error rates and response times when answering a set of questions using either space time cube or a baseline 2D representation. For some simple questions, the error rates were lower when using the baseline representation. For complex questions where the participants needed an overall understanding of the spatiotemporal structure of the data set, the space time cube representation resulted in on average twice as fast response times with no difference in error rates compared to the baseline. These results provide an empirical foundation for the hypothesis that space time cube representation benefits users analyzing complex spatiotemporal patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Space time cube representation is an information visualization technique where spatiotemporal data points are mapped into a cube. Fast and correct analysis of such information is important in for instance geospatial and social visualization applications. Information visualization researchers have previously argued that space time cube representation is beneficial in revealing complex spatiotemporal patterns in a dataset to users. The argument is based on the fact that both time and spatial information are displayed simultaneously to users, an effect difficult to achieve in other representations. However, to our knowledge the actual usefulness of space time cube representation in conveying complex spatiotemporal patterns to users has not been empirically validated. To fill this gap we report on a between-subjects experiment comparing novice users error rates and response times when answering a set of questions using either space time cube or a baseline 2D representation. For some simple questions the error rates were lower when using the baseline representation. For complex questions where the participants needed an overall understanding of the spatiotemporal structure of the dataset, the space time cube representation resulted in on average twice as fast response times with no difference in error rates compared to the baseline. These results provide an empirical foundation for the hypothesis that space time cube representation benefits users when analyzing complex spatiotemporal patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper proposes Latin hypercube sampling combined with the stratified sampling of variance reduction technique to calculate accurate fracture probability. In the compound sampling, the number of simulations is relatively small and the calculation error is satisfactory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The probability distribution of lift-off velocity of the saltating grains is a bridge to linking microscopic and macroscopic research of aeolian sand transport. The lift-off parameters of saltating grains (i.e., the horizontal and vertical lift-off velocities, resultant lift-off velocity, and lift-off angle) in a wind tunnel are measured by using a Phase Doppler Particle Analyzer (PDPA). The experimental results show that the probability distribution of horizontal lift-off velocity of saltating particles on a bed surface is a normal function, and that of vertical lift-off velocity is an exponential function. The probability distribution of resultant lift-off velocity of saltating grains can be expressed as a log-normal function, and that of lift-off angle complies with an exponential function. A numerical model for the vertical distribution of aeolian mass flux based on the probability distribution of lift-off velocity is established. The simulation gives a sand mass flux distribution which is consistent with the field data of Namikas (Namikas, S.L., 2003. Field measurement and numerical modelling of acolian mass flux distributions on a sandy beach, Sedimentology 50, 303-326). Therefore, these findings are helpful to further understand the probability characteristics of lift-off grains in aeolian sand transport. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A metric representation of DNA sequences is borrowed from symbolic dynamics. In view of this method, the pattern seen in the chaos game representation of DNA sequences is explained as the suppression of certain nucleotide strings in the DNA sequences. Frequencies of short nucleotide strings and suppression of the shortest ones in the DNA sequences can be determined by using the metric representation.