898 resultados para PRINCIPAL COMPONENT ANALYSIS
Resumo:
Combined EEG/fMRI recordings offer a promising opportunity to detect brain areas with altered BOLD signal during interictal epileptic discharges (IEDs). These areas are likely to represent the irritative zone, which is itself a reflection of the epileptogenic zone. This paper reports on the imaging findings using independent component analysis (ICA) to continuously quantify epileptiform activity in simultaneously acquired EEG and fMRI. Using ICA derived factors coding for the epileptic activity takes into account that epileptic activity is continuously fluctuating with each spike differing in amplitude, duration and maybe topography, including subthreshold epileptic activity besides clear IEDs and may thus increase the sensitivity and statistical power of combined EEG/fMRI in epilepsy. Twenty patients with different types of focal and generalized epilepsy syndromes were investigated. ICA separated epileptiform activity from normal physiological brain activity and artifacts. In 16/20 patients, BOLD correlates of epileptic activity matched the EEG sources, the clinical semiology, and, if present, the structural lesions. In clinically equivocal cases, the BOLD correlates aided to attribute proper diagnosis of the underlying epilepsy syndrome. Furthermore, in one patient with temporal lobe epilepsy, BOLD correlates of rhythmic delta activity could be employed to delineate the affected hippocampus. Compared to BOLD correlates of manually identified IEDs, the sensitivity was improved from 50% (10/20) to 80%. The ICA EEG/fMRI approach is a safe, non-invasive and easily applicable technique, which can be used to identify regions with altered hemodynamic effects related to IEDs as well as intermittent rhythmic discharges in different types of epilepsy.
Resumo:
This paper studied two different regression techniques for pelvic shape prediction, i.e., the partial least square regression (PLSR) and the principal component regression (PCR). Three different predictors such as surface landmarks, morphological parameters, or surface models of neighboring structures were used in a cross-validation study to predict the pelvic shape. Results obtained from applying these two different regression techniques were compared to the population mean model. In almost all the prediction experiments, both regression techniques unanimously generated better results than the population mean model, while the difference on prediction accuracy between these two regression methods is not statistically significant (α=0.01).
Resumo:
BACKGROUND It is unknown why patients with extensive ulcerative colitis (UC) have a higher risk of colorectal cancer compared with patients with left-sided UC. This study characterizes the inflammatory processes in left-sided UC, pancolitis, and UC-associated dysplasia at the transcriptional level to identify potential biomarkers and transcripts of importance for the carcinogenic behavior of chronic inflammation. METHODS The Affymetrix GeneChip Human Genome U133 Plus 2.0 was applied on colonic biopsies from UC patients with left-sided UC, pancolitis, dysplasia, and controls. Reverse transcription polymerase chain reaction and immunohistochemistry were performed for validating selected transcripts in the initial cohort and in 2 independent cohorts of patients with UC. Microarray data were analyzed by principal component analysis, and reverse transcription polymerase chain reaction and immunohistochemistry data by the Wilcoxon's rank-sum test. RESULTS The principal component analysis results revealed separate clusters for left-sided UC, pancolitis, dysplasia, and controls. Close clustering of dysplastic and pancolitic samples indicated similarities in gene expression. Indeed, 101 and 656 parallel upregulated and downregulated transcripts, respectively, were identified in specimens from dysplasia and pancolitis. Validation of selected transcripts hereof identified insulin receptor alpha (INSRA) and MAP kinase interacting serine/threonine kinase 2 (MKNK2) with an enhanced expression in dysplasia compared with left-sided UC and controls, whereas laminin γ2 (LAMC2) was found with a lower expression in dysplasia compared with the remaining 3 groups. CONCLUSIONS This study demonstrates pancolitis and left-sided UC as distinct inflammatory processes at the transcriptional level, and identifies INSRA, MKNK2, and LAMC2 as potential critical transcripts in the inflammation-driven preneoplastic process of UC.
Resumo:
Pathway based genome wide association study evolves from pathway analysis for microarray gene expression and is under rapid development as a complementary for single-SNP based genome wide association study. However, it faces new challenges, such as the summarization of SNP statistics to pathway statistics. The current study applies the ridge regularized Kernel Sliced Inverse Regression (KSIR) to achieve dimension reduction and compared this method to the other two widely used methods, the minimal-p-value (minP) approach of assigning the best test statistics of all SNPs in each pathway as the statistics of the pathway and the principal component analysis (PCA) method of utilizing PCA to calculate the principal components of each pathway. Comparison of the three methods using simulated datasets consisting of 500 cases, 500 controls and100 SNPs demonstrated that KSIR method outperformed the other two methods in terms of causal pathway ranking and the statistical power. PCA method showed similar performance as the minP method. KSIR method also showed a better performance over the other two methods in analyzing a real dataset, the WTCCC Ulcerative Colitis dataset consisting of 1762 cases, 3773 controls as the discovery cohort and 591 cases, 1639 controls as the replication cohort. Several immune and non-immune pathways relevant to ulcerative colitis were identified by these methods. Results from the current study provided a reference for further methodology development and identified novel pathways that may be of importance to the development of ulcerative colitis.^
Resumo:
In the Persian Gulf and the Gulf of Oman marl forms the primary sediment cover, particularly on the Iranian side. A detailed quantitative description of the sediment components > 63 µ has been attempted in order to establish the regional distribution of the most important constituents as well as the criteria governing marl sedimentation in general. During the course of the analysis, the sand fraction from about 160 bottom-surface samples was split into 5 phi° fractions and 500 to 800 grains were counted in each individual fraction. The grains were cataloged in up to 40 grain type catagories. The gravel fraction was counted separately and the values calculated as weight percent. Basic for understanding the mode of formation of the marl sediment is the "rule" of independent availability of component groups. It states that the sedimentation of different component groups takes place independently, and that variation in the quantity of one component is independent of the presence or absence of other components. This means, for example, that different grain size spectrums are not necessarily developed through transport sorting. In the Persian Gulf they are more likely the result of differences in the amount of clay-rich fine sediment brought in to the restricted mouth areas of the Iranian rivers. These local increases in clayey sediment dilute the autochthonous, for the most part carbonate, coarse fraction. This also explains the frequent facies changes from carbonate to clayey marl. The main constituent groups of the coarse fraction are faecal pellets and lumps, the non carbonate mineral components, the Pleistocene relict sediment, the benthonic biogene components and the plankton. Faecal pellets and lumps are formed through grain size transformation of fine sediment. Higher percentages of these components can be correlated to large amounts of fine sediment and organic C. No discernable change takes place in carbonate minerals as a result of digestion and faecal pellet formation. The non-carbonate sand components originate from several unrelated sources and can be distinguished by their different grain size spectrum; as well as by other characteristics. The Iranian rivers supply the greatest amounts (well sorted fine sand). Their quantitative variations can be used to trace fine sediment transport directions. Similar mineral maxima in the sediment of the Gulf of Oman mark the path of the Persian Gulf outflow water. Far out from the coast, the basin bottoms in places contain abundant relict minerals (poorly sorted medium sand) and localized areas of reworked salt dome material (medium sand to gravel). Wind transport produces only a minimal "background value" of mineral components (very fine sand). Biogenic and non-biogenic relict sediments can be placed in separate component groups with the help of several petrographic criteria. Part of the relict sediment (well sorted fine sand) is allochthonous and was derived from the terrigenous sediment of river mouths. The main part (coarse, poorly sorted sediment), however, was derived from the late Pleistocene and forms a quasi-autochthonous cover over wide areas which receive little recent sedimentation. Bioturbation results in a mixing of the relict sediment with the overlying younger sediment. Resulting vertical sediment displacement of more than 2.5 m has been observed. This vertical mixing of relict sediment is also partially responsible for the present day grain size anomalies (coarse sediment in deep water) found in the Persian Gulf. The mainly aragonitic components forming the relict sediment show a finely subdivided facies pattern reflecting the paleogeography of carbonate tidal flats dating from the post Pleistocene transgression. Standstill periods are reflected at 110 -125m (shelf break), 64-61 m and 53-41 m (e.g. coare grained quartz and oolite concentrations), and at 25-30m. Comparing these depths to similar occurrences on other shelf regions (e. g. Timor Sea) leads to the conclusion that at this time minimal tectonic activity was taking place in the Persian Gulf. The Pleistocene climate, as evidenced by the absence of Iranian river sediment, was probably drier than the present day Persian Gulf climate. Foremost among the benthonic biogene components are the foraminifera and mollusks. When a ratio is set up between the two, it can be seen that each group is very sensitive to bottom type, i.e., the production of benthonic mollusca increases when a stable (hard) bottom is present whereas the foraminifera favour a soft bottom. In this way, regardless of the grain size, areas with high and low rates of recent sedimentation can be sharply defined. The almost complete absence of mollusks in water deeper than 200 to 300 m gives a rough sedimentologic water depth indicator. The sum of the benthonic foraminifera and mollusca was used as a relative constant reference value for the investigation of many other sediment components. The ratio between arenaceous foraminifera and those with carbonate shells shows a direct relationship to the amount of coarse grained material in the sediment as the frequence of arenaceous foraminifera depends heavily on the availability of sand grains. The nearness of "open" coasts (Iranian river mouths) is directly reflected in the high percentage of plant remains, and indirectly by the increased numbers of ostracods and vertebrates. Plant fragments do not reach their ultimate point of deposition in a free swimming state, but are transported along with the remainder of the terrigenous fine sediment. The echinoderms (mainly echinoids in the West Basin and ophiuroids in the Central Basin) attain their maximum development at the greatest depth reached by the action of the largest waves. This depth varies, depending on the exposure of the slope to the waves, between 12 to 14 and 30 to 35 m. Corals and bryozoans have proved to be good indicators of stable unchanging bottom conditions. Although bryozoans and alcyonarian spiculae are independent of water depth, scleractinians thrive only above 25 to 30 m. The beginning of recent reef growth (restricted by low winter temperatures) was seen only in one single area - on a shoal under 16 m of water. The coarse plankton fraction was studied primarily through the use of a plankton-benthos ratio. The increase in planktonic foraminifera with increasing water depth is here heavily masked by the "Adjacent sea effect" of the Persian Gulf: for the most part the foraminifera have drifted in from the Gulf of Oman. In contrast, the planktonic mollusks are able to colonize the entire Persian Gulf water body. Their amount in the plankton-benthos ratio always increases with water depth and thereby gives a reliable picture of local water depth variations. This holds true to a depth of around 400 m (corresponding to 80-90 % plankton). This water depth effect can be removed by graphical analysis, allowing the percentage of planktonic mollusks per total sample to be used as a reference base for relative sedimentation rate (sedimentation index). These values vary between 1 and > 1000 and thereby agree well with all the other lines of evidence. The "pteropod ooze" facies is then markedly dependent on the sedimentation rate and can theoretically develop at any depth greater than 65 m (proven at 80 m). It should certainly no longer be thought of as "deep sea" sediment. Based on the component distribution diagrams, grain size and carbonate content, the sediments of the Persian Gulf and the Gulf of Oman can be grouped into 5 provisional facies divisions (Chapt.19). Particularly noteworthy among these are first, the fine grained clayey marl facies occupying the 9 narrow outflow areas of rivers, and second, the coarse grained, high-carbonate marl facies rich in relict sediment which covers wide sediment-poor areas of the basin bottoms. Sediment transport is for the most part restricted to grain sizes < 150 µ and in shallow water is largely coast-parallel due to wave action at times supplemented by tidal currents. Below the wave base gravity transport prevails. The only current capable of moving sediment is the Persian Gulf outflow water in the Gulf of Oman.
Resumo:
This paper constitutes a first detailed and systematic facies and biota description of an isolated carbonate knoll (Pee Shoal) in the Timor Sea (Sahul Shelf, NW Australia). The steep and flat-topped knoll is characterized by a distinct facies zonation comprising (A) soft sediments with scattered debris and scarce sponges, hydrozoans and crinoids (320-210 m water depth), (B) hardground outcrops (step-like banks, vertical cliffs) that are mainly colonized by octocorals and sponges (210-75 m), and (C) the summit region (75-21 m) where the slopes merge gently into the flat-topped summit that is densely colonized by massive and encrusting zooxanthellate corals and the octocoral Heliopora coerulea. In contrast, the sediments recovered from the summit are dominated by the green alga Halimeda, subordinate components are corals, benthic foraminifers, mollusks, and coralline red algae. Thus, the sediments are classified as chlorozoan grain assemblage. However, non-skeletal grains (fecal pellets, ooids) are almost completely absent. This discrepancy between the living biota and the sediment composition could reflect a disruption by the severe tropical cyclone Ingrid that hit the northern Australian shelf in March 2005, just before the sampling for this study took place (September 2005).