853 resultados para POLY(PROPYLENE IMINE) DENDRIMERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The wound healing promoting effect of negative wound pressure therapies (NPWT) takes place at the wound interface. The use of bioactive substances at this site represents a major research area for the development of future NPWT therapies. To assess wound healing kinetics in pressure ulcers treated by NPWT with or without the use of a thin interface membrane consisting of poly-N-acetyl glucosamine nanofibers (sNAG) a prospective randomized clinical trial was performed. The safety of the combination of NPWT and sNAG was also assessed in patients treated with antiplatelet drugs. In the performed study, the combination of NPWT and sNAG in 10 patients compared to NPWT alone in 10 patients promoted wound healing due to an improved contraction of the wound margins (p = 0.05) without a change in wound epithelization. In 6 patients treated with antiplatelet drugs no increased wound bleeding was observed in patients treated by NPWT and sNAG. In conclusion, the application of thin membranes of sNAG nanofibers at the wound interface using NPWT was safe and augmented the action of NPWT leading to improved wound healing due to a stimulation of wound contraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of poly(butylene terephthalate) copolyesters containing 5-tert-butyl isophthalate units up to 50%-mole, as well as the homopolyester entirely made of these units, were prepared by polycondensation from the melt. The microstructure of the copolymers was determined by NMR to be at random for the whole range of compositions. The effect exerted by the 5-tert-butyl isophthalate units on thermal, tensile and gas transport properties was evaluated. Both Tm and crystallinity as well as the mechanical moduli were found to decrease steadily with copolymerization whereas Tg increased and the polyesters became more brittle. Permeability and solubility sligthly increased also with the content in substituted units whereas the diffusion coefficient remained practically constant. For the homopolyester poly(5-tert-butyl isophthalate), all these properties were found to deviate significantly from the general trend displayed by copolyesters suggesting that a different chain mode of packing in the amorphous phase is likely adopted in this case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to develop novel daptomycin-loaded poly-epsilon-caprolactone (PCL) microparticles with enhanced antibiofilm activity against mature biofilms of clinically relevant bacteria, methicillin-resistant Staphylococcus aureus (MRSA) and polysaccharide intercellular adhesin-positive Staphylococcus epidermidis. Daptomycin was encapsulated into PCL microparticles by a double emulsion-solvent evaporation method. For comparison purposes, formulations containing vancomycin were also prepared. Particle morphology, size distribution, encapsulation efficiency, surface charge, thermal behavior, and in vitro release were assessed. All formulations exhibited a spherical morphology, micrometer size, and negative surface charge. From a very early time stage, the released concentrations of daptomycin and vancomycin were higher than the minimal inhibitory concentration and continued so up to 72 hours. Daptomycin presented a sustained release profile with increasing concentrations of the drug being released up to 72 hours, whereas the release of vancomycin stabilized at 24 hours. The antibacterial activity of the microparticles was assessed by isothermal microcalorimetry against planktonic and sessile MRSA and S. epidermidis. Regarding planktonic bacteria, daptomycin-loaded PCL microparticles presented the highest antibacterial activity against both strains. Isothermal microcalorimetry also revealed that lower concentrations of daptomycin-loaded microparticles were required to completely inhibit the recovery of mature MRSA and S. epidermidis biofilms. Further characterization of the effect of daptomycin-loaded PCL microparticles on mature biofilms was performed by fluorescence in situ hybridization. Fluorescence in situ hybridization showed an important reduction in MRSA biofilm, whereas S. epidermidis biofilms, although inhibited, were not eradicated. In addition, an important attachment of the microparticles to MRSA and S. epidermidis biofilms was observed. Finally, all formulations proved to be biocompatible with both ISO compliant L929 fibroblasts and human MG63 osteoblast-like cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biocompatibility is a requirement for the development of nanofibers for ophthalmic applications. In this study, nanofibers were elaborated using poly(ε-caprolactone) via electrospinning. The ocular biocompatibility of this material was investigated. MIO-M1 and ARPE-19 cell cultures were incubated with nanofibers and cellular responses were monitored by viability and morphology. The in vitro biocompatibility revealed that the nanofibers were not cytotoxic to the ocular cells. These cells exposed to the nanofibers proliferated and formed an organized monolayer. ARPE-19 and MIO-M1 cells were capable of expressing GFAP, respectively, demonstrating their functionality. Nanofibers were inserted into the vitreous cavity of the rat's eye for 10days and the in vivo biocompatibility was investigated using Optical Coherence Tomography (OCT), histology and measuring the expression of pro-inflammatory genes (IL-1β, TNF-α, VEGF and iNOS) (real-time PCR). The OCT and the histological analyzes exhibited the preserved architecture of the tissues of the eye. The biomaterial did not elicit an inflammatory reaction and pro-inflammatory cytokines were not expressed by the retinal cells, and the other posterior tissues of the eye. Results from the biocompatibility studies indicated that the nanofibers exhibited a high degree of cellular biocompatibility and short-term intraocular tolerance, indicating that they might be applied as drug carrier for ophthalmic use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An aliphatic-aromatic copolyester of poly(ethylene terephthalate), PET, and poly(ethylene adipate), PEA, PET-co-PEA, was synthesized by the high temperature melt reaction of post-consumer PET and PEA. As observed by NMR spectroscopy, the reaction yielded random copolyesters in a few minutes through ester-interchange reactions, even without added catalyst. The copolyesters obtained in the presence of a catalyst presented higher intrinsic viscosity than that obtained without the addition of catalyst, due to simultaneous polycondensation and ester-interchange reactions. The structure of the aliphatic-aromatic copolyesters obtained in different PET/PEA ratio is random as observed by NMR analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we investigate the formation of superficial micro- and nanostructures in poly(ethylene-2,6-naphthalate) (PEN), with a view to their use in biomedical device applications, and compare its performance with a polymer commonly used for the fabrication of these devices, poly(methyl methacrylate) (PMMA). The PEN is found to replicate both micro- and nanostructures in its surface, albeit requiring more forceful replication conditions than PMMA, producing a slight increase in surface hydrophilicity. This ability to form micro/nanostructures, allied to biocompatibility and good optical transparency, suggests that PEN could be a useful material for production of, or for incorporation into, transparent devices for biomedical applications. Such devices will be able to be autoclaved, due to the polymer's high temperature stability, and will be useful for applications where forceful experimental conditions are required, due to a superior chemical resistance over PMMA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using the van't Hoff and Gibbs equations the apparent thermodynamic functions Gibbs energy, enthalpy, and entropy of solution for triclocarban in ethanol + propylene glycol mixtures were evaluated from solubility data determined at temperatures from (293.15 to 313.15) K. The drug solubility was greatest in the mixture with 0.60 in mass fraction of ethanol and lowest in neat propylene glycol at almost all the temperatures studied. Non-linear enthalpy-entropy compensation is found indicating apparently different mechanisms of the solution process according to the mixtures composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(ethylene-co-methyl acrylate) (EMA) and poly (caprolactone) triol (PCL-T) blends, a biodegradable aliphatic polyester with low molecular weight and moderate water solubility containing diltiazem hydrochloride (DZ) were studied in terms of the thermal and morphological properties, and drug release mechanism. An increase in the PCL-T content in the EMA/PCL-T/DZ films decreased the degree of DZ crystallinity. Drug release from these films is temperature-dependent, and it is possible to modify the drug release rate by adjusting the EMA/PCL-T composition of the blends. The mechanism of drug release is governed by PCL-T melting and PCL-T leaching from EMA matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the use of an electrode modified with poly(o-methoxyaniline) for detecting lithium ions. These ions are present in drugs used for treating bipolar disorder and that requires periodical monitoring of the concentration of lithium in blood serum. Poly(o-methoxyaniline) was obtained electrochemically by cyclic voltammetry on the surface of a gold electrode. The results showed that the electrode modified with a conducting polymer responded to lithium ions in the concentration range of 1 x 10-5 to 1 x 10-4 mol L-1 . The results also confirmed that the performance of the modified electrode was comparable to that of the standard method (atomic emission spectrophotometry).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclosporine-A-loaded PLGA implants were developed intended for ocular route. Implants were prepared using solvent extraction/evaporation technique followed by casting of the cake into rods in a heated surface. XRD patterns showed that cyclosporine-A was completely incorporated into PLGA. FTIR and DSC results indicated alterations on drug molecular conformation aiming to reach the most stable thermodynamic conformation at polymer/drug interface. Implants provided controlled/sustained in vitro release of the drug. During the first 7 weeks, the drug release was controlled by the diffusion of the cyclosporine-A; and between 7-23 week period, the drug diffusion and degradation of PLGA controlled the drug release.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogels have been prepared by free-radical solution copolymerization of acrylamide and sodium acrylate (NaAc), with molar ratio ranging from 25/75 to 80/20, respectively, using methylene bisacrylamide as the crosslinking agent. A FTIR spectroscopy procedure to determine the acrylate/acrylamide ratio in these hydrogels was proposed based on absorbance at 1410 cm-1 (nCOO-) and 2940 cm-1 (nCH and nCH2). A straight line with a good linear correlation coefficient (0.998) was obtained by plotting the acrylate content (Ac%) versus relative absorbance (Arel = A1410/A2940). Results were confirmed by the amount of sodium cation released in acid medium determined by atomic absorption spectrometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we describe the synthesis of an ion imprinted polymer (IIP) by homogeneous polymerization and its use in solid-phase to extract and preconcentrate zinc ions. Under optimal conditions (pH 5.0, preconcentration flow rate of 12.0 mL min-1, and eluted with 1.0 mol L-1 HNO3) this procedure allows the determination of zinc with an enrichment factor of 10.2, and with limits of detection and quantification of 1.5 and 5.0 µg L-1, respectively. The accuracy of our results was confirmed by analysis of tap water and certified reference materials: NIST 1570a (Spinach leaves) and NIST 1515 (Apple leaves).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aims to prepare biodegradable films from cassava starch, poly (butylene adipate-co-terephthalate) (PBAT), and montmorillonite (MMT) using blow-extrusion process and analyze the effects of different types and concentrations of MMT on the microstructure, physicochemical, and mechanical properties of the resulting films. The films were produced by blending 30% of PBAT with glycerol (17.5%), starch (49.0-52.5%), and four different types of montmorillonite (Cloisite® Na+, 10A, 15A, and 30B) at two different concentrations (1.75% and 3.5%). All the films prepared in this study showed an increase in the basal spacing of MMT layers. In particular, the films with 10A and 30B showed the highest increase in intercalation basal spacing, suggesting the formation of intercalated composites. The addition of nanoclays decreased the elongation of films. The addition of Cloisite® 10A resulted in films with the lowest WVP values and the highest stability to water adsorption under different RH conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The environmental impact of plastic waste has attracted worldwide attention. Amid the current context of increasing concern for the environment, biodegradable plastics have been widely studied as a replacement for synthetic plastics. Poly(3-hydroxybutyrate) (P(3HB)) is a biopolymer stored as an intracellular energy and reserve source in many microorganisms. Because it is an intracellular product, P(3HB) must be extracted from the cells at the end of the culture. The purpose of this study was to investigate the effect of extraction time, heating temperature, first standing time (after filtration and extraction), second standing time (after P(3HB) precipitation) and solvent amount, during the process of extracting P(3HB) from Cupriavidus necator DSM 545, using propylene carbonate as solvent. The extraction kinetic of P(3HB) with propylene carbonate from thermally treated biomass was evaluated at different temperatures. The physical properties of the P(3HB) obtained were also evaluated. In this case, P(3HB) obtained at optimal conditions of recovery (98%) and purity (99%) was used. Results showed that temperature was the most important factor in these responses for the range of values studied (110-150 ºC).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel superabsorbent hydrogel (SH) composite based on a poly(acrylamide-co-acrylate) matrix filled with nontronite (NONT), a Fe(III)-rich member of the smectite group of clay minerals, is described in this manuscript. A variety of techniques, including FTIR, XRD, TGA, and SEM/EDX, were utilized to characterize this original composite. Experimental data confirmed the SH composite formation and suggested NONT was completely dispersed in the polymeric matrix. Additionally, NONT improved the water uptake capacity of the final material, which exhibited fast absorption, low sensitivity to the presence of salt, high water retention and a pH sensitive properties. These preliminary data showed that the original SH composite prepared here possesses highly attractive properties for applications in areas such as the agriculture field, particularly as a soil conditioner.