916 resultados para PLASMA PROGESTERONE LEVELS
Resumo:
A synthetic human atrial natriuretic peptide of 26 aminoacids [human (3-28)ANP or hANP] was infused into normal male volunteers. Six subjects were infused for 4 h at 1-wk intervals with either hANP at the rate of 0.5 or 1.0 microgram/min or its vehicle in a single-blind randomized order. Human (3-28)ANP at the dose of 0.5 microgram/min raised immunoreactive plasma ANP levels from 104 +/- 17 to 221 +/- 24 pg/ml (mean +/- SEM), but it induced no significant change in blood pressure, heart rate, effective renal plasma flow, glomerular filtration rate, or renal electrolyte excretion. At the rate of 1.0 microgram/min, human (3-28)ANP increased immunoreactive plasma ANP levels from 89 +/- 12 to 454 +/- 30 pg/ml. It reduced effective renal plasma flow from 523 +/- 40 to 453 +/- 38 ml/min (P less than 0.05 vs. vehicle), but left glomerular filtration rate unchanged. Natriuresis rose from 207 +/- 52 to 501 +/- 69 mumol/min (P less than 0.05 vs. vehicle) and urinary magnesium excretion from 3.6 +/- 0.5 to 5.6 +/- 0.5 mumol/min (P less than 0.01 vs. vehicle). The excretion rate of the other electrolytes, blood pressure, and heart rate were not significantly modified. At both doses, human (3-28)ANP tended to suppress the activity of the renin-angiotensin-aldosterone system. In 3 additional volunteers, the skin blood flow response to human (3-28)ANP, infused for 4 h at the rate of 1.0 microgram/min, was studied by means of a laser-doppler flowmeter. The skin blood flow rose during the first 2 h of peptide administration, then fell progressively to values below baseline. After the infusion was discontinued, it remained depressed for more than 2 h. Thus, in normal volunteers, human (3-28)ANP at the dose of 1.0 microgram/min produced results similar to those obtained previously with rat (3-28)ANP. It enhanced natriuresis without changing the glomerular filtration rate while effective renal plasma flow fell. It also induced a transient vasodilation of the skin vascular bed.
Resumo:
PURPOSE: To evaluate functional and ultrastructural changes in the retina of scavenger receptor B1 (SR-BI) knockout (KO) mice consuming a high fat cholate (HFC) diet. METHODS: Three-month-old male KO and wild-type (WT) mice were fed an HFC diet for 30 weeks. After diet supplementation, plasma cholesterol levels and electroretinograms were analyzed. Neutral lipids were detected with oil red O, and immunohistochemistry was performed on cryostat ocular tissue sections. The retina, Bruch's membrane (BM), retinal pigment epithelium (RPE), and choriocapillaris (CC) were analyzed by transmission electron microscopy. RESULTS: Using the WT for reference, ultrastructural changes were recorded in HFC-fed SR-BI KO mice, including lipid inclusions, a patchy disorganization of the photoreceptor outer segment (POS) and the outer nuclear layer (ONL), and BM thickening with sparse sub-RPE deposits. Within the CC, there was abnormal disorganization of collagen fibers localized in ectopic sites with sparse and large vacuolization associated with infiltration of macrophages in the subretinal space, reflecting local inflammation. These lesions were associated with electroretinographic abnormalities, particularly increasing implicit time in a- and b-wave scotopic responses. Abnormal vascular endothelial growth factor (VEGF) staining was detected in the outer nuclear layer. CONCLUSIONS: HFC-fed SR-BI KO mice thus presented sub-RPE lipid-rich deposits and functional and morphologic alterations similar to some features observed in dry AMD. The findings lend further support to the hypothesis that atherosclerosis causes retinal and subretinal damage that increases susceptibility to some forms of AMD.
Resumo:
Objectives: Considering the large inter-individual differences in the function of the systems involved in imatinib disposition, exposure to this drug can be expected to vary widely among patients. Among those known systems is alpha-1-acid glycoprotein (AGP), a circulating protein that strongly binds imatinib. This observational study aimed to explore the influence of plasma AGP on imatinib pharmacokinetics. Methods: A population pharmacokinetic analysis was performed using NONMEM based on 278 plasma samples from 51 oncologic patients, for whom both total imatinib and AGP plasma concentrations were measured. The influence of this biological covariate on oral clearance and volume of distribution was examined. Results: A one-compartment model with first-order absorption appropriately described the data. A hyperbolic relationship between plasma AGP levels and oral clearance, as well as volume of distribution was observed. A mechanistic approach was built up, postulating that only the unbound imatinib concentration was able to undergo first-order elimination through an unbound clearance process, and integrating the dissociation constant as a parameter in the model. This approach allowed determining an average (± SEM) free clearance of 1310 (± 172) L/h and a volume of distribution of 301 (± 23) L. By comparison, the total clearance previously determined was 14 (± 1) L/h. Free clearance was affected by body weight and pathology diagnosis. Moreover, this model provided consistent estimates of the association constant between imatinib and AGP (5.5?106 L/mol) and of the average in vivo free fraction of imatinib (1.1%). The variability observed (17% for free clearance and 66% for volume of distribution) was less than the one previously reported without considering AGP impact. AGP explained indeed about one half of the variability observed in total imatinib disposition. Conclusion: Such findings clarify in part the in vivo impact of protein binding on imatinib disposition and might raise again the question whether high levels of AGP could represent a resistance factor to imatinib. This remains however questionable, as it is not expected to affect free drug concentrations. On the other hand, would imatinib be demonstrated as a drug requiring therapeutic drug monitoring, either the measurement of free concentration or the correction of the total concentration by the actual AGP plasma levels should be considered for accurate interpretation of the results.
Resumo:
We have shown previously that voluntary ethanol consumption and resistance to ethanol-induced sedation are inversely related to neuropeptide Y (NPY) levels in NPY-knock-out (NPY(-/-)) and NPY-overexpressing mice. In the present report, we studied knock-out mice completely lacking the NPY Y1 receptor (Y1(-/-)) to further characterize the role of the NPY system in ethanol consumption and neurobiological responses to this drug. Here we report that male Y1(-/-) mice showed increased consumption of solutions containing 3, 6, and 10% (v/v) ethanol when compared with wild-type (Y1(+/+)) control mice. Female Y1(-/-) mice showed increased consumption of a 10% ethanol solution. In contrast, Y1(-/-) mice showed normal consumption of solutions containing either sucrose or quinine. Relative to Y1(+/+) mice, male Y1(-/-) mice were found to be less sensitive to the sedative effects of 3.5 and 4.0 gm/kg ethanol as measured by more rapid recovery from ethanol-induced sleep, although plasma ethanol levels did not differ significantly between the genotypes. Finally, male Y1(-/-) mice showed normal ethanol-induced ataxia on the rotarod test after administration of a 2.5 gm/kg dose. These data suggest that the NPY Y1 receptor regulates voluntary ethanol consumption and some of the intoxicating effects caused by administration of ethanol.
Resumo:
Thiazolidinediones are agonists of peroxisome proliferator-activated receptor gamma (PPARgamma) that can induce fluid retention and weight gain through unclear mechanisms. To test a proposed role for the epithelial sodium channel ENaC in thiazolidinedione-induced fluid retention, we used mice with conditionally inactivated alphaENaC in the collecting duct (Scnn1a(loxloxCre) mice). In control mice, rosiglitazone did not alter plasma aldosterone levels or protein expression of ENaC subunits in the kidney, but did increase body weight, plasma volume, and the fluid content of abdominal fat pads, and decreased hematocrit. Scnn1a(loxloxCre) mice provided functional evidence for blunted Na+ uptake in the collecting duct, but still exhibited rosiglitazone-induced fluid retention. Moreover, treatment with rosiglitazone or pioglitazone did not significantly alter the open probability or number of ENaC channels per patch in isolated, split-open cortical collecting ducts of wild-type mice. Finally, patch-clamp studies in primary mouse inner medullary collecting duct cells did not detect ENaC activity but did detect a nonselective cation channel upregulated by pioglitazone. These data argue against a primary and critical role of ENaC in thiazolidinedione-induced fluid retention.
Resumo:
MicroRNAs (miRNAs) are small non-coding RNAs that regulate various biological processes. Cell-free miRNAs measured in blood plasma have emerged as specific and sensitive markers of physiological processes and disease. In this study, we investigated whether circulating miRNAs can serve as biomarkers for the detection of autologous blood transfusion, a major doping technique that is still undetectable. Plasma miRNA levels were analyzed using high-throughput quantitative real-time PCR. Plasma samples were obtained before and at several time points after autologous blood transfusion (blood bag storage time 42 days) in 10 healthy subjects and 10 controls without transfusion. Other serum markers of erythropoiesis were determined in the same samples. Our results revealed a distinct change in the pattern of circulating miRNAs. Ten miRNAs were upregulated in transfusion samples compared with control samples. Among these, miR-30b, miR-30c, and miR-26b increased significantly and showed a 3.9-, 4.0-, and 3.0-fold change, respectively. The origin of these miRNAs was related to pulmonary and liver tissues. Erythropoietin (EPO) concentration decreased after blood reinfusion. A combination of miRNAs and EPO measurement in a mathematical model enhanced the efficiency of autologous transfusion detection through miRNA analysis. Therefore, our results lay the foundation for the development of miRNAs as novel blood-based biomarkers to detect autologous transfusion.
Resumo:
Barbiturates are regularly used as an anesthetic for animal experimentation and clinical procedures and are frequently provided with solubilizing compounds, such as ethanol and propylene glycol, which have been reported to affect brain function and, in the case of (1)H NMR experiments, originate undesired resonances in spectra affecting the quantification. As an alternative, thiopental can be administrated without any solubilizing agents. The aim of the study was to investigate the effect of deep thiopental anesthesia on the neurochemical profile consisting of 19 metabolites and on glucose transport kinetics in vivo in rat cortex compared with alpha-chloralose using localized (1)H NMR spectroscopy. Thiopental was devoid of effects on the neurochemical profile, except for the elevated glucose at a given plasma glucose level resulting from thiopental-induced depression of glucose consumption at isoelectrical condition. Over the entire range of plasma glucose levels, steady-state glucose concentrations were increased on average by 48% +/- 8%, implying that an effect of deep thiopental anesthesia on the transport rate relative to cerebral glucose consumption ratio was increased by 47% +/- 8% compared with light alpha-chloralose-anesthetized rats. We conclude that the thiopental-induced isoelectrical condition in rat cortex significantly affected glucose contents by depressing brain metabolism, which remained substantial at isoelectricity.
Resumo:
Aldosterone promotes electrogenic sodium reabsorption through the amiloride-sensitive epithelial sodium channel (ENaC). Here, we investigated the importance of ENaC and its positive regulator channel-activating protease 1 (CAP1/Prss8) in colon. Mice lacking the αENaC subunit in colonic superficial cells (Scnn1a(KO)) were viable, without fetal or perinatal lethality. Control mice fed a regular or low-salt diet had a significantly higher amiloride-sensitive rectal potential difference (∆PDamil) than control mice fed a high-salt diet. In Scnn1a(KO) mice, however, this salt restriction-induced increase in ∆PDamil did not occur, and the circadian rhythm of ∆PDamil was blunted. Plasma and urinary sodium and potassium did not change with regular or high-salt diets or potassium loading in control or Scnn1a(KO) mice. However, Scnn1a(KO) mice fed a low-salt diet lost significant amounts of sodium in their feces and exhibited high plasma aldosterone and increased urinary sodium retention. Mice lacking the CAP1/Prss8 in colonic superficial cells (Prss8(KO)) were viable, without fetal or perinatal lethality. Compared with controls, Prss8(KO) mice fed regular or low-salt diets exhibited significantly reduced ∆PDamil in the afternoon, but the circadian rhythm was maintained. Prss8(KO) mice fed a low-salt diet also exhibited sodium loss through feces and higher plasma aldosterone levels. Thus, we identified CAP1/Prss8 as an in vivo regulator of ENaC in colon. We conclude that, under salt restriction, activation of the renin-angiotensin-aldosterone system in the kidney compensated for the absence of ENaC in colonic surface epithelium, leading to colon-specific pseudohypoaldosteronism type 1 with mineralocorticoid resistance without evidence of impaired potassium balance.
Resumo:
The leishmaniases are a group of diseases transmitted by the bite of Leishmania infected female phlebotomine sand flies. The diseases occur in different forms: localized, diffuse and muco-cutaneous leishmaniasis, and visceral leishmaniasis (VL). Inside macrophages, the main host cells of the obligate intracellular Leishmania parasites, nitric oxide synthase and arginase can regulate parasite killing or growth. In experimental leishmaniasis, we previously reported that non-healing disease is associated with higher arginase activity at site of pathology, correlating with local suppression of T cell function. To test whether these data translate to human leishmaniasis, the following study was initiated: I first tested the hypothesis that local suppression of T cell responses observed in persistent CL is associated with arginase induced L-arginine depletion. The results showed that arginase activity is increased at site of pathology compared to peripheral blood mononuclear cells (PBMCs) of LCL patients and intact skin of healthy controls. The phenotype of arginase expressing cells was identified in both compartments as CD15+ CD14|0W low-density granulocytes (LDGs). Finally, high arginase activity at site of pathology observed in cutaneous lesions of patients coincides with downregulation of CD3Ç, CD4 and CD8 molecules in CD4+ and CD8+ T cells at site of pathology. We concluded that increased arginase levels in lesions of LCL patients might contribute to CL pathogenesis by impairing T cell effector function at site of pathology. Next, it was tested whether arginase, an enzyme associated with immunosuppression, is higher in patients with VL and contributes to impaired T cell function through depletion of L- arginine. The results showed that higher level of arginase activity in the PBMC coincides with active phase of VL. Cells expressing arginase in PBMCs were also found to be LDGs. Importantly, increased arginase activity and frequency of degranulated neutrophils coincided with lower plasma L-arginine levels. Furthermore, downregulation of CD3Ç, in T cells correlated with low plasma arginine levels. VL/HIV co-infection is a frequently reported leishmaniasis complication in Ethiopia associated with poor prognosis, with up to 40% mortality rate and high relapse rate. Arginase activity was significantly increased in PBMCs and plasma of VL patients co-infected with HIV than in those having VL alone. Similarly, cells expressing arginase in PBMCs were found to be LDGs. In summary, the results presented here show that increased arginase activity is a marker of disease severity in human leishmaniasis with and without HIV; further, these results suggest that arginase mediated L-arginine depletion may inhibit T cell function and contribute to impaired control of infection. - Les leishmanioses sont un groupe de maladies transmises par la piqûre de mouches des sables femelles, appelées phlébotomes, ayant été infectées par Leishmania. Les maladies se manifestent sous différentes formes: la leishmaniose cutanée localisée, la leishmaniose diffuse et mucocutanée et la leishmaniose viscérale (LV). A l'intérieur des macrophages, les principales cellules hôtes des parasites, l'oxyde nitrique synthase et l'arginase, peuvent contrôler, soit la mort du parasite, soit sa croissance. Pour la leishmaniose expérimentale, nous avons déjà rapporté que le développement de lesions qui ne guérissent pas est associé à une activité plus grande d'arginase au site d'infection, en corrélation avec la suppression locale de la fonction des cellules T. Pour vérifier si ces données pouvaient s'appliquer à la leishmaniose humaine, j'ai d'abord vérifié l'hypothèse selon laquelle la suppression locale des réponses des cellules T observée dans la CL persistante, est associée à la la diminution de L- arginine induite par l'arginase. Les résultats ont montré que l'activité arginase est augmentée au site d'infection, par rapport aux cellules mononucléées du sang périphérique (CMSP) de patients LCL et à la peau intacte des contrôles sains. Le phénotype de cellules exprimant l'arginase a été identifié dans les deux compartiments comme des granulocytes CD15+ et CD 14" de basse densité (LDG). Enfin, l'activité arginase élevée au site de la pathologie, observée dans les lésions cutanées de patients, coïncide avec la reduction dde l'expression des molécules CD3Ç, CD4 et CD8 dans les cellules T CD4+ et CD8+ au site de pathologie . Nous avons conclu que l'augmentation des niveaux d'arginase dans les lésions de patients LCL pourrait contribuer à la pathogenèse de la CL, en altérant la fonction effectrice des celllules T au site de la pathologie. Ensuite, nous avons vérifié si l'arginase, une enzyme associée à l'immunosuppression, était plus élevée chez les patients atteints de VL et si elle contribuait à la mauvaise fonction des cellules T par la depletion en L-arginine. Les résultats ont montré qu'un niveau plus élevé de l'activité arginase dans les PBMC correspond à la phase active de la VL. Les cellules exprimant l'arginase dans les CMSP se sont révélées à être de type LDG . Il est important de souligner que l'augmentation de l'activité arginase et la fréquence des neutrophiles dégranulés a coïncidé avec des niveaux inférieurs de L-arginine plasmatique. En outre, la suppression de CD3Ç dans les cellules T correlle avec de faibles niveaux d'arginine plasmatique . Il a été fréquement rapporté que la co-infection VL/VIH est une complication de la leishmaniose en Ethiopie, associée à un mauvais prognostic, un taux de mortalité pouvant atteindre 40% et un pourcentage élevé de rechutes. L'activité de l'arginase a beaucoup plus augmentée dans les CMSP et le plasma de patients atteints de VL et co-infectés par le VIH, que chez ceux seulement attaints de VL. De même, les cellules exprimant l'arginase dans les CMSP sont aussi des LDG. En résumé, les résultats présentés ici montrent que l'augmentation de l'activité de l'arginase est un marqueur de gravité de la la leishmaniose humaine, avec ou sans VIH ; en outre, ces résultats suggèrent que la déplétion de L-arginine par l'arginase pourrait inhiber la fonction des cellules T et contribuer à un contrôle réduit de l'infection. - Les Leishmanioses sont des maladies parasitaires transmises par la piqûre d'une mouche des sables femelle (phlébotome) infectée par Leishmania. La maladie se manifeste sous différentes formes cliniques : la leishmaniose viscérale, une maladie progressive mortelle en l'absence de traitement, la leishmaniose muco-cutanée (MCL), la leishmaniose cutanée diffuse (LCD ) maladie mutilante, qui peut être de longue durée et la leishmaniose cutanée localisée maladie dont on guérit mais laissant une cicatrice inesthétique à vie. La maladie est largement répandue, elle affecte les populations les plus pauvres dans 98 pays et 350 millions de personnes à risque. Globalement on estime à 500.000 les nouveaux cas de la forme viscérale et 1-1.5 million ceux de la leishmaniose cutanée. La leishmaniose est fortement endémique en Ethiopie et se manifeste dans les formes viscérale et cutanée. Le parasite Leishmania infecte et se multiplie dans les cellules du système immunitaire, principalement les macrophages. Les macrophages sont capables de tuer le parasite Leishmania s'ils reçoivent des instructions correctes de la part d'autres cellules du système immunitaire, les lymphocytes. Les macrophages expriment deux enzymes importants, appelés oxide nitrique synthase inductible (iNOS ) et l'arginase, qui sont respectivement associés à la promotion de la mort du parasite et la multiplication. L'enzyme iNOS présent dans les macrophages métabolise l'arginine afin de générer de l'oxyde d'azote (NO) , une molécule effectrice nécessaire pour tuer le parasite . Au contraire, lorsque les macrophages sont activés d'une certaine manière conduisant à l'augmention de la régulation de l'arginase, ils métabolisent l'arginine en polyamines qui favorisent la croissance du parasite. Au cours du développement de la leishmaniose, les lymphocytes ne parviennent pas à transmettre aux macrophages les signaux nécessaires pour tuer le parasite. Les mécanismes cellulaires qui sont la cause de ce défaut, ne sont pas bien compris. En utilisant des modèles animaux, nous avons montré la régulation à la hausse de l'arginase au site de la pathologie, qui s'est traduit par l'altération de la fonction effectrice des lymphoctes. Nous avons initié des études de leishmaniose humaine en Ethiopie afin d'identifier le rôle de l'arginase dans la sévérité de la maladie. Nos résultats montrent, que l'arginase est fortement augmentée dans la lésion des patients CL, et dans le sang des patients VL et ceux co-infectés par VL / VIH. Le niveau d' arginase régulée à la hausse coincide avec l'expression inférieure d'une molécule de signalisation dans les lymphocytes, qui est essentielle à leur bon fonctionnement. En VL actif, l'augmentation d'arginase se traduit par la diminution de l'arginine qui est indispensable à la synthèse de NO et au bon fonctionnement des lymphocytes. Ainsi, l'incapacité des lymphocytes à envoyer des signaux adéquats aux macrophages pourrait être due à la suppression de l'arginine.
Resumo:
The effect of circulating arginine vasopressin (AVP) on blood pressure, heart rate, and skin blood flow was assessed in normotensive subjects, mild hypertensive patients, and patients with congestive heart failure, utilizing the specific antagonist of AVP at the vascular receptor level, d(CH2)5Tyr(Me)AVP (5 micrograms/kg i.v.). The renin system of the normal volunteers treated with the AVP antagonist was either intact or acutely blocked with the angiotensin converting-enzyme inhibitor captopril (25 mg p.o.). In some volunteers, the cardiovascular effect of AVP released by Finnish sauna or cigarette smoking was studied. In patients with congestive heart failure, hemodynamic measurements (pressures and cardiac output) were obtained invasively. Acute blockade of AVP vascular receptors produced no cardiovascular effect unless plasma AVP levels were markedly elevated. In our experience, abnormally high circulating AVP appears to be responsible for the decrease in skin blood flow induced by cigarette smoking and to some extent for the maintenance of vascular tone in the rare patients with particularly severe congestive heart failure.
Resumo:
Neuropeptide Y (NPY) is a 36 aminoacid peptide known to inhibit glucose-stimulated insulin secretion. NPY has been shown to be synthesized and secreted by rat islets of Langerhans. More recently, we described the presence on NPY within human islets of Langerhans and in several pancreatic endocrine tumors. In this report, we describe the case of a patient presenting with an insulinoma who underwent the surgical resection of the tumor and was studied in vivo and in vitro for NPY production. Using a highly specific and sensitive two-site amplified enzyme-linked immunosorbent assay, we detected high plasma NPY levels in the patient prior to the surgical resection of the tumor which returned to normal after surgery. NPY was secreted from the tumor when kept in primary cell culture. Furthermore, immunohistochemistry of the insulinoma revealed the presence of NPY and its C-flanking peptide together with insulin, chromogranin and neuron specific enolase. It is concluded that elevated circulating NPY levels observed in this patient with an insulinoma reflected in vivo secretion by the tumor and it is hypothesized that NPY could potentially be used as an endocrine marker in patients with suspected insulinoma.
Resumo:
The expression of the serum- and glucocorticoid-regulated kinase 1 (Sgk1) is induced by mineralocorticoids and, in turn, upregulates the renal epithelial Na(+) channel (ENaC). Total inactivation of Sgk1 has been associated with transient urinary Na(+) wasting with a low-Na(+) diet, while the aldosterone-mediated ENaC channel activation was unchanged in the collecting duct. Since Sgk1 is ubiquitously expressed, we aimed to study the role of renal Sgk1 and generated an inducible kidney-specific knockout (KO) mouse. We took advantage of the previously described TetOn/CreLoxP system, in which rtTA is under the control of the Pax8 promotor, allowing inducible inactivation of the floxed Sgk1 allele in the renal tubules (Sgk1fl/fl/Pax8/LC1 mice). We found that under a standard Na(+) diet, renal water and Na(+)/K(+) excretion had a tendency to be higher in doxycycline-treated Sgk1 KO mice compared with control mice. The impaired ability of Sgk1 KO mice to retain Na(+) increased significantly with a low-salt diet despite higher plasma aldosterone levels. On a low-Na(+) diet, the Sgk1 KO mice were also hyperkaliuric and lost body weight. This phenotype was accompanied by a decrease in systolic and diastolic blood pressure. At the protein level, we observed a reduction in phosphorylation of the ubiquitin protein-ligase Nedd4-2 and a decrease in the expression of the Na(+)-Cl(-)-cotransporter (NCC) and to a lesser extent of ENaC.
Resumo:
Apart from its role during labor and lactation, oxytocin is involved in several other functions. Interestingly, oxytocin- and oxytocin receptor-deficient mice develop late-onset obesity with normal food intake, suggesting that the hormone might exert a series of beneficial metabolic effects. This was recently confirmed by data showing that central oxytocin infusion causes weight loss in diet-induced obese mice. The aim of the present study was to unravel the mechanisms underlying such beneficial effects of oxytocin. Chronic central oxytocin infusion was carried out in high fat diet-induced obese rats. Its impact on body weight, lipid metabolism and insulin sensitivity was determined. We observed a dose-dependent decrease in body weight gain, increased adipose tissue lipolysis and fatty acid β-oxidation, as well as reduced glucose intolerance and insulin resistance. The additional observation that plasma oxytocin levels increased upon central infusion suggested that the hormone might affect adipose tissue metabolism by direct action. This was demonstrated using in vitro, ex vivo, as well as in vivo experiments. With regard to its mechanism of action in adipose tissue, oxytocin increased the expression of stearoyl-coenzyme A desaturase 1, as well as the tissue content of the phospholipid precursor, N-oleoyl-phosphatidylethanolamine, the biosynthetic precursor of the oleic acid-derived PPAR-alpha activator, oleoylethanolamide. Because PPAR-alpha regulates fatty acid β-oxidation, we hypothesized that this transcription factor might mediate the oxytocin effects. This was substantiated by the observation that, in contrast to its effects in wild-type mice, oxytocin infusion failed to induce weight loss and fat oxidation in PPAR-alpha-deficient animals. Altogether, these results suggest that oxytocin administration could represent a promising therapeutic approach for the treatment of human obesity and type 2 diabetes.
Resumo:
BACKGROUND: Efavirenz (EFV) causes neuropsychiatric side-effects and an unfavourable blood lipid profile. We investigated the effect of replacing EFV with etravirine (ETR) on patient preference, sleep, anxiety and lipid levels. METHOD: Study participants did not complain of side-effects, had tolerated EFV for at least 3 months, with less than 50 copies/ml HIV-RNA. After randomization, the ETR-first group started with ETR (400 mg daily) [DOSAGE ERROR CORRECTED] with EFV-placebo and the EFV-first group with EFV with ETR-placebo. After 6 weeks, both groups switched to the alternate regimen. Nucleoside reverse transcriptase inhibitors were continued without any change. The primary end point was patient preference for the first or the second regimen, assessed after 12 weeks. RESULTS: Fifty-eight patients were enrolled with a median CD4 cell count of 589 cells/μl and the duration of previous EFV therapy was 3.9 years. Fifty-five patients completed the study. When asked about treatment preference after 12 weeks, 16 preferred EFV and 22 preferred ETR, whereas 17 did not express a preference (P = NS). Patients who continued EFV during the first phase of the trial preferred EFV (15/21, 71%), whereas patients who started with ETR were more likely to prefer ETR (n = 16/17, 94%). This order effect was strongly significant (P < 0.0001). Quality of sleep, depression, anxiety and stress scores did not differ significantly between groups. Median plasma cholesterol levels decreased by 0.7 mmol (29 mg/100 ml) after replacing EFV with ETR (P < 0.002). CONCLUSION: After substitution of EFV by ETR, patients did not express a significant preference for ETR. There was no measurable effect on neuropsychiatric symptoms and sleep. Cholesterol decreased.
Resumo:
This study was conducted to assess the pharmacologic properties of the new orally active angiotensin II subtype I (AT1) antagonist UR-7247, a product with a half-life >100 h in humans. The experiment was designed as an open-label, single-dose administration study with four parallel groups of four healthy men receiving increasing single oral doses (2.5, 5, and 10 mg) of UR-7247 or losartan, 100 mg. Angiotensin II receptor blockade was investigated < or =96 h after drug intake, with three independent methods [i.e., the inhibition of blood pressure (BP) response to exogenous Ang II, an in vitro Ang II-receptor assay (RRA), and the reactive increase in plasma angiotensin II. Plasma drug levels also were measured. The degree of blockade observed in vivo was statistically significant < or = 96 h with all UR-7247 doses for diastolic BP (p < 0.05) and < or =48 h for systolic BP. The maximal inhibition achieved with 10 mg UR-7247 was measured 6-24 h after drug intake and reached 54 +/- 17% and 48 +/- 20% for diastolic and systolic responses, respectively. Losartan, 100 mg, induced a greater short-term AT1-receptor blockade than 2.5- and 5.0-mg doses of UR-7247 (p < 0.001 for diastolic BP), but the UR-7247 effect was longer lasting. In vivo, no significant difference was observed between 10 mg UR-7247 and 100 mg losartan 4 h after drug intake, but in vitro, the blockade achieved with 100 mg losartan was higher than that seen with UR-7247. Finally, the results confirm that UR-7247 has a very long plasma elimination half-life, which may be due to a high but also tight binding to protein binding sites. In conclusion, UR-7247 is a long-lasting, well-tolerated AT1 receptor in healthy subjects.