977 resultados para PLA farine stampa 3D additive manufacturing materiali compositi FDM annealing bio-compositi


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bei der Fertigung von Funktionsbauteilen für Strömungsversuche spielt das Design und die Komplexität der Bauteilgeometrie eine wesentliche Rolle. Ziel der interdisziplinären Zusammenarbeit der Lehrstühle Strömungsmaschinen, Rechnereinsatz in der Konstruktion und Fertigungstechnik mit dem Rapid Technology Center (RTC) an der Universität Duisburg-Essen ist es, das Potenzial der additiven Fertigungsverfahren bei der Herstellung von Funktionsprototypen für strömungsmechanische Anwendungen effektiv zu nutzen. An verschiedenen, auf dieser Kooperation beruhenden, Best Practise Beispielen wird gezeigt wie das Laser-Sintern in die Prozesskette zur Herstellung von Laufrädern u. Ä. in unterschiedlichen Größenordnungen integriert werden kann. In diesem Zusammenhang werden auch die Vorüberlegungen (z. B. durch Simulation), Wechselwirkungen und Folgeprozesse, die mit dieser Fertigungstechnologie verbunden sind, aufgezeigt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bei der Fertigung von Funktionsbauteilen für Strömungsversuche spielt das Design und die Komplexität der Bauteilgeometrie eine wesentliche Rolle. Ziel der interdisziplinären Zusammenarbeit der Lehrstühle Strömungsmaschinen, Rechnereinsatz in der Konstruktion und Fertigungstechnik mit dem Rapid Technology Center (RTC) an der Universität Duisburg-Essen ist es, das Potenzial der additiven Fertigungsverfahren bei der Herstellung von Funktionsprototypen für strömungsmechanische Anwendungen effektiv zu nutzen. An verschiedenen, auf dieser Kooperation beruhenden, Best Practise Beispielen wird gezeigt wie das Laser-Sintern in die Prozesskette zur Herstellung von Laufrädern u. Ä. in unterschiedlichen Größenordnungen integriert werden kann. In diesem Zusammenhang werden auch die Vorüberlegungen (z. B. durch Simulation), Wechselwirkungen und Folgeprozesse, die mit dieser Fertigungstechnologie verbunden sind, aufgezeigt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis deals with the problem of efficiently tracking 3D objects in sequences of images. We tackle the efficient 3D tracking problem by using direct image registration. This problem is posed as an iterative optimization procedure that minimizes a brightness error norm. We review the most popular iterative methods for image registration in the literature, turning our attention to those algorithms that use efficient optimization techniques. Two forms of efficient registration algorithms are investigated. The first type comprises the additive registration algorithms: these algorithms incrementally compute the motion parameters by linearly approximating the brightness error function. We centre our attention on Hager and Belhumeur’s factorization-based algorithm for image registration. We propose a fundamental requirement that factorization-based algorithms must satisfy to guarantee good convergence, and introduce a systematic procedure that automatically computes the factorization. Finally, we also bring out two warp functions to register rigid and nonrigid 3D targets that satisfy the requirement. The second type comprises the compositional registration algorithms, where the brightness function error is written by using function composition. We study the current approaches to compositional image alignment, and we emphasize the importance of the Inverse Compositional method, which is known to be the most efficient image registration algorithm. We introduce a new algorithm, the Efficient Forward Compositional image registration: this algorithm avoids the necessity of inverting the warping function, and provides a new interpretation of the working mechanisms of the inverse compositional alignment. By using this information, we propose two fundamental requirements that guarantee the convergence of compositional image registration methods. Finally, we support our claims by using extensive experimental testing with synthetic and real-world data. We propose a distinction between image registration and tracking when using efficient algorithms. We show that, depending whether the fundamental requirements are hold, some efficient algorithms are eligible for image registration but not for tracking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

3D woven composites reinforced with either S2 glass, carbon or a hybrid combination of both and containing either polyethylene or carbon z-yarns were tested under low-velocity impact. Different impact energies (in the range of 21–316 J) were used and the mechanical response (in terms of the impact strength and energy dissipated) was compared with that measured in high-performance, albeit standard, 2D laminates. It was found that the impact strength in both 2D and 3D materials was mainly dependent on the in-plane fiber fracture. Conversely, the energy absorption capability was primarily influenced by the presence of z-yarns, having the 3D composites dissipated over twice the energy than the 2D laminates, irrespective of their individual characteristics (fiber type, compaction degree, porosity, etc.). X-ray microtomography revealed that this improvement was due to the z-yarns, which delayed delamination and maintained the structural integrity of the laminate, promoting energy dissipation by tow splitting, intensive fiber breakage under the tup and formation of a plug by out-of-plane shear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate the capability of a laser micromachining workstation for cost-effective manufacturing of a variety of microfluidic devices, including SU-8 microchannels on silicon wafers and 3D complex structures made on polyimide Kapton® or poly carbonate (PC). The workstation combines a KrF excimer laser at 248 nm and a Nd3+:YVO4 DPSS with a frequency tripled at 355 nm with a lens magnification 10X, both lasers working at a pulsed regime with nanoseconds (ns) pulse duration. Workstation also includes a high-resolution motorized XYZ-tilt axis (~ 1 um / axis) and a Through The Lens (TTL) imaging system for a high accurate positioning over a 120 x 120 mm working area. We have surveyed different fabrication techniques: direct writing lithography,mask manufacturing for contact lithography and polymer laser ablation for complex 3D devices, achieving width channels down to 13μ m on 50μ m SU-8 thickness using direct writing lithography, and width channels of 40 μm for polyimide on SiO2 plate. Finally, we have tested the use of some devices for capillary chips measuring the flow speed for liquids with different viscosities. As a result, we have characterized the presence of liquid in the channel by interferometric microscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El objetivo principal del presente Proyecto Fin de Carrera es la construcción , montaje y calibración de una impresora 3D auto replicable modelo Prusa Mendel capaz de trabajar en coordenadas polares, lo cual abre las puertas a la investigación de calidades, tolerancias, resistencias estructurales… de estas piezas en comparación con las fabricadas por impresoras cartesianas. Encontraras una guía de montaje paso a paso, además de un listado de todos los componentes, imprimibles y no imprimibles, que componen la impresora 3D. También se analizan y comparan las opciones a la hora de introducir la electrónica necesaria, extrusor y de los posibles errores y soluciones que se pueden encontrar durante la fabricación de una de estas máquinas. Finalmente dispondrás de una guía de calibración de skeinforce 41,para poder conseguir una impresión de gran calidad. Abstract The main objective of this Thesis is the construction, installation and calibration of a self-replicating 3D printer model Prusa Mendel able to work in polar coordinates, which opens the door to research quality, tolerances, these structural resistance ... parts compared to those manufactured by Cartesian printers. In this project you will find a guide step by step assembly, and a list of all components, and 3D printer components printable and unprintable. We also analyze and compare the options when entering the necessary electronics, extruder and possible errors and solutions that may occur during manufacturing of these machines finally have an installation guide calibration skeinforge 41 to get a high quality print

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deformation and failure micromechanisms of a hybrid 3D woven composite were studied in tension. Plain and open-hole composite coupons were tested in tension until failure in the fill and warp directions, as well as fiber tows extracted from the dry fabric and impregnated with the matrix. The macroscopic evolution of damage in the composite coupons was assessed by means of periodic unloading–reloading (to obtain the elastic modulus and the residual strain), whereas the microscopic mechanism were established by means of X-ray computed microtomography. To this end, specimens were periodically removed from the mechanical testing machine and infiltrated with ZnI-containing liquid to assess the main damage modes as a function of the applied strain. The experimental observations and the predictions of an isostrain model were used to understand the key factors controlling the elastic modulus, strength and notch sensitivity of hybrid 3D woven composites in tension. It was found that the full contribution of the glass fibers to the composite strength was not employed, due to the premature fracture of the carbon fibers, but their presence increased the fracture strain and the energy dissipated during fracture. Thus, hybridization of the 3D woven composite led to a notch-insensitive behavior as demonstrated by open-hole tests

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analyses on DNA microarrays depend considerably on spot quality and a low background signal of the glass support. By using betaine as an additive to a spotting solution made of saline sodium citrate, both the binding efficiency of spotted PCR products and the homogeneity of the DNA spots is improved significantly on aminated surfaces such as glass slides coated with the widely used poly-l-lysine or aminosilane. In addition, non-specific background signal is markedly diminished. Concomitantly, during the arraying procedure, the betaine reduces evaporation from the microtitre dish wells, which hold the PCR products. Subsequent blocking of the chip surface with succinic anhydride was improved considerably in the presence of the non-polar, non-aqueous solvent 1,2-dichloroethane and the acylating catalyst N-methylimidazole. This procedure prevents the overall background signal that occurs with the frequently applied aqueous solvent 1-methyl-2-pyrrolidone in borate buffer because of DNA that re-dissolves from spots during the blocking process, only to bind again across the entire glass surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blends of poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) plasticized with a lactic acid oligomer (OLA) added at three different concentrations (15, 20 and 30 wt% by weight), were prepared by an optimized extrusion process to improve the processability and mechanical properties of these biopolymers for flexible film manufacturing. Morphological, chemical, thermal, mechanical, barrier and migration properties were investigated and formulations with desired performance in eco-friendly films were selected. The efficiency of OLA as plasticizer for PLA_PHB blends was demonstrated by the significant decrease of their glass transition temperatures and a considerable improvement of their ductile properties. The measured improvements in the barrier properties are related to the higher crystallinity of the plasticized PLA_PHB blends, while the overall migration test underlined that all the proposed formulations maintained migration levels below admitted levels. The PLA_PHB blend with 30 wt% OLA was selected as the optimum formulation for food packaging, since it offered the best compromise between ductility and oxygen and water vapor barrier properties with practically no migration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During grasping and intelligent robotic manipulation tasks, the camera position relative to the scene changes dramatically because the robot is moving to adapt its path and correctly grasp objects. This is because the camera is mounted at the robot effector. For this reason, in this type of environment, a visual recognition system must be implemented to recognize and “automatically and autonomously” obtain the positions of objects in the scene. Furthermore, in industrial environments, all objects that are manipulated by robots are made of the same material and cannot be differentiated by features such as texture or color. In this work, first, a study and analysis of 3D recognition descriptors has been completed for application in these environments. Second, a visual recognition system designed from specific distributed client-server architecture has been proposed to be applied in the recognition process of industrial objects without these appearance features. Our system has been implemented to overcome problems of recognition when the objects can only be recognized by geometric shape and the simplicity of shapes could create ambiguity. Finally, some real tests are performed and illustrated to verify the satisfactory performance of the proposed system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As systems for computer-aided-design and production of mechanical parts have developed, there has arisen a need for techniques for the comprehensive description of the desired part, including its 3-D shape. The creation and manipulation of shapes is generally known as geometric modelling. It is desirable that links be established between geometric modellers and machining programs. Currently, unbounded APT and some bounded geometry systems are being widely used in manufacturing industry for machining operations such as: milling, drilling, boring and turning, applied mainly to engineering parts. APT systems, however, are presently only linked to wire-frame drafting systems. The combination of a geometric modeller and APT will provide a powerful manufacturing system for industry from the initial design right through part manufacture using NC machines. This thesis describes a recently developed interface (ROMAPT) between a bounded geometry modeller (ROMULUS) and an unbounded NC processor (APT). A new set of theoretical functions and practical algorithms for the computer aided manufacturing of 3D solid geometric model has been investigated. This work has led to the development of a sophisticated computer program, ROMAPT, which provides a new link between CAD (in form of a goemetric modeller ROMULUS) and CAM (in form of the APT NC system). ROMAPT has been used to machine some engineering prototypes successfully both in soft foam material and aluminium. It has been demonstrated above that the theory and algorithms developed by the author for the development of computer aided manufacturing of 3D solid modelling are both valid and applicable. ROMAPT allows the full potential of a solid geometric modeller (ROMULUS) to be further exploited for NC applications without requiring major investment in new NC processor. ROMAPT supports output in APT-AC, APT4 and the CAM-I SSRI NC languages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Il presente lavoro di tesi mira a studiare l’utilizzo di aggregati artificiali (PLA) costituiti da aggregati leggeri (LWA) impregnati di materiali a cambiamento di fase (Phase-Change Materials, PCM) nei conglomerati bituminosi. L’obiettivo della tesi è quello di dimostrare che l’utilizzo di questi materiali nelle sovrastrutture stradali, grazie alla proprietà di cambiare fase (da solida a liquida e viceversa) in funzione della temperatura, induce una liberazione di calore. La conseguenza immediata dell’utilizzo di questi materiali è la ridotta necessità di manutenzione invernale, abbattendo i costi di ripristino della pavimentazione. Inoltre l’utilizzo di PLA non deve pregiudicare l’aspetto prestazionale e la vita utile dell’infrastruttura.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Computer-Aided-Design (CAD) and Computer-Aided-Manufacture (CAM) has been developed to fabricate fixed dental restorations accurately, faster and improve cost effectiveness of manufacture when compared to the conventional method. Two main methods exist in dental CAD/CAM technology: the subtractive and additive methods. While fitting accuracy of both methods has been explored, no study yet has compared the fabricated restoration (CAM output) to its CAD in terms of accuracy. The aim of this present study was to compare the output of various dental CAM routes to a sole initial CAD and establish the accuracy of fabrication. The internal fit of the various CAM routes were also investigated. The null hypotheses tested were: 1) no significant differences observed between the CAM output to the CAD and 2) no significant differences observed between the various CAM routes. Methods: An aluminium master model of a standard premolar preparation was scanned with a contact dental scanner (Incise, Renishaw, UK). A single CAD was created on the scanned master model (InciseCAD software, V2.5.0.140, UK). Twenty copings were then fabricated by sending the single CAD to a multitude of CAM routes. The copings were grouped (n=5) as: Laser sintered CoCrMo (LS), 5-axis milled CoCrMo (MCoCrMo), 3-axis milled zirconia (ZAx3) and 4-axis milled zirconia (ZAx4). All copings were micro-CT scanned (Phoenix X-Ray, Nanotom-S, Germany, power: 155kV, current: 60µA, 3600 projections) to produce 3-Dimensional (3D) models. A novel methodology was created to superimpose the micro-CT scans with the CAD (GOM Inspect software, V7.5SR2, Germany) to indicate inaccuracies in manufacturing. The accuracy in terms of coping volume was explored. The distances from the surfaces of the micro-CT 3D models to the surfaces of the CAD model (CAD Deviation) were investigated after creating surface colour deviation maps. Localised digital sections of the deviations (Occlusal, Axial and Cervical) and selected focussed areas were then quantitatively measured using software (GOM Inspect software, Germany). A novel methodology was also explored to digitally align (Rhino software, V5, USA) the micro-CT scans with the master model to investigate internal fit. Fifty digital cross sections of the aligned scans were created. Point-to-point distances were measured at 5 levels at each cross section. The five levels were: Vertical Marginal Fit (VF), Absolute Marginal Fit (AM), Axio-margin Fit (AMF), Axial Fit (AF) and Occlusal Fit (OF). Results: The results of the volume measurement were summarised as: VM-CoCrMo (62.8mm3 ) > VZax3 (59.4mm3 ) > VCAD (57mm3 ) > VZax4 (56.1mm3 ) > VLS (52.5mm3 ) and were all significantly different (p presented as areas with different colour. No significant differences were observed at the internal aspect of the cervical aspect between all groups of copings. Significant differences (p< M-CoCrMo Internal Occlusal, Internal Axial and External Axial 2 ZAx3 > ZAx4 External Occlusal, External Cervical 3 ZAx3 < ZAx4 Internal Occlusal 4 M-CoCrMo > ZAx4 Internal Occlusal and Internal Axial The mean values of AMF and AF were significantly (p M-CoCrMo and CAD > ZAx4. Only VF of M-CoCrMo was comparable with the CAD Internal Fit. All VF and AM values were within the clinically acceptable fit (120µm). Conclusion: The investigated CAM methods reproduced the CAD accurately at the internal cervical aspect of the copings. However, localised deviations at axial and occlusal aspects of the copings may suggest the need for modifications in these areas prior to fitting and veneering with porcelain. The CAM groups evaluated also showed different levels of Internal Fit thus rejecting the null hypotheses. The novel non-destructive methodologies for CAD/CAM accuracy and internal fit testing presented in this thesis may be a useful evaluation tool for similar applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We address the problem of 3D-assisted 2D face recognition in scenarios when the input image is subject to degradations or exhibits intra-personal variations not captured by the 3D model. The proposed solution involves a novel approach to learn a subspace spanned by perturbations caused by the missing modes of variation and image degradations, using 3D face data reconstructed from 2D images rather than 3D capture. This is accomplished by modelling the difference in the texture map of the 3D aligned input and reference images. A training set of these texture maps then defines a perturbation space which can be represented using PCA bases. Assuming that the image perturbation subspace is orthogonal to the 3D face model space, then these additive components can be recovered from an unseen input image, resulting in an improved fit of the 3D face model. The linearity of the model leads to efficient fitting. Experiments show that our method achieves very competitive face recognition performance on Multi-PIE and AR databases. We also present baseline face recognition results on a new data set exhibiting combined pose and illumination variations as well as occlusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern manufacturing systems should satisfy emerging needs related to sustainable development. The design of sustainable manufacturing systems can be valuably supported by simulation, traditionally employed mainly for time and cost reduction. In this paper, a multi-purpose digital simulation approach is proposed to deal with sustainable manufacturing systems design through Discrete Event Simulation (DES) and 3D digital human modelling. DES models integrated with data on power consumption of the manufacturing equipment are utilized to simulate different scenarios with the aim to improve productivity as well as energy efficiency, avoiding resource and energy waste. 3D simulation based on digital human modelling is employed to assess human factors issues related to ergonomics and safety of manufacturing systems. The approach is implemented for the sustainability enhancement of a real manufacturing cell of the aerospace industry, automated by robotic deburring. Alternative scenarios are proposed and simulated, obtaining a significant improvement in terms of energy efficiency (−87%) for the new deburring cell, and a reduction of energy consumption around −69% for the coordinate measuring machine, with high potential annual energy cost savings and increased energy efficiency. Moreover, the simulation-based ergonomic assessment of human operator postures allows 25% improvement of the workcell ergonomic index.