983 resultados para PCR detection
Resumo:
Background: Hepatitis C virus (HCV) genotyping is the most significant predictor of the response to antiviral therapy. The aim of this study was to develop and evaluate a novel real-time PCR method for HCV genotyping based on the NS5B region. Methodology/Principal Findings: Two triplex reaction sets were designed, one to detect genotypes 1a, 1b and 3a; and another to detect genotypes 2a, 2b, and 2c. This approach had an overall sensitivity of 97.0%, detecting 295 of the 304 tested samples. All samples genotyped by real-time PCR had the same type that was assigned using LiPA version 1 (Line in Probe Assay). Although LiPA v. 1 was not able to subtype 68 of the 295 samples (23.0%) and rendered different subtype results from those assigned by real-time PCR for 12/295 samples (4.0%), NS5B sequencing and real-time PCR results agreed in all 146 tested cases. Analytical sensitivity of the real-time PCR assay was determined by end-point dilution of the 5000 IU/ml member of the OptiQuant HCV RNA panel. The lower limit of detection was estimated to be 125 IU/ml for genotype 3a, 250 IU/ml for genotypes 1b and 2b, and 500 IU/ml for genotype 1a. Conclusions/Significance: The total time required for performing this assay was two hours, compared to four hours required for LiPA v. 1 after PCR-amplification. Furthermore, the estimated reaction cost was nine times lower than that of available commercial methods in Brazil. Thus, we have developed an efficient, feasible, and affordable method for HCV genotype identification.
Resumo:
Background: The Brazilian population is mainly descendant from European colonizers, Africans and Native Americans. Some Afro-descendants lived in small isolated communities since the slavery period. The epidemiological status of HBV infection in Quilombos communities from northeast of Brazil remains unknown. The aim of this study was to characterize the HBV genotypes circulating inside a Quilombo isolated community from Maranhao State, Brazil. Methods: Seventy-two samples from Frechal Quilombo community at Maranhao were collected. All serum samples were screened by enzyme-linked immunosorbent assays for the presence of hepatitis B surface antigen ( HBsAg). HBsAg positive samples were submitted to DNA extraction and a fragment of 1306 bp partially comprising HBsAg and polymerase coding regions (S/POL) was amplified by nested PCR and its nucleotide sequence was determined. Viral isolates were genotyped by phylogenetic analysis using reference sequences from each genotype obtained from GenBank (n = 320). Sequences were aligned using Muscle software and edited in the SE-AL software. Bayesian phylogenetic analyses were conducted using Markov Chain Monte Carlo (MCMC) method to obtain the MCC tree using BEAST v.1.5.3. Results: Of the 72 individuals, 9 (12.5%) were HBsAg-positive and 4 of them were successfully sequenced for the 1306 bp fragment. All these samples were genotype A1 and grouped together with other sequences reported from Brazil. Conclusions: The present study represents the first report on the HBV genotypes characterization of this community in the Maranhao state in Brazil where a high HBsAg frequency was found. In this study, we reported a high frequency of HBV infection and the exclusive presence of subgenotype A1 in an Afro-descendent community in the Maranhao State, Brazil.
Resumo:
Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), is the etiologic agent of all forms of Kaposi's sarcoma, primary effusion lymphoma and the plasmablastic cell variant of multicentric Castleman disease. In endemic areas of sub-Saharan Africa, blood transfusions have been associated with a substantial risk of HHV-8 transmission. By contrast, several studies among healthy blood donors from North America have failed to detect HHV-8 DNA in samples of seropositive individuals. In this study, using a real-time PCR assay, we investigated the presence of HHV-8 DNA in whole-blood samples of 803 HHV-8 blood donors from three Brazilian states (Sao Paulo, Amazon, Bahia) who tested positive for HHV-8 antibodies, in a previous multicenter study. HHV-8 DNA was not detected in any sample. Our findings do not support the introduction of routine HHV-8 screening among healthy blood donors in Brazil. (WC = 140).
Resumo:
Human bocavirus (HBoV) is a parvovirus recently identified in association with acute respiratory infections (ARI). Despite its worldwide occurrence, little is known on the pathogenesis of HBoV infections. In addition, few systematic studies of HBoV in ARI have been conducted in Latin America. Therefore, in order to test whether active viral replication of human bocavirus is associated with respiratory diseases and to understand the clinical impact of this virus in patients with these diseases, we performed a 3-year retrospective hospital-based study of HBoV in outpatients and inpatients with symptoms of Acute Respiratory Infections (ARI) in Brazil. Nasopharyngeal aspirates (NPAs) from 1015 patients with respiratory symptoms were tested for HBoV DNA by PCR. All samples positive for HBoV were tested by PCR for all other respiratory viruses, had HBoV viral loads determined by quantitative real time PCR and, when possible, were tested by RT-PCR for HBoV VP1 mRNA, as evidence of active viral replication. HBoV was detected in 4.8% of patients, with annual rates of 10.0%, 3.0% and 3.0% in 2005, 2006 and 2007, respectively. The range of respiratory symptoms was similar between HBoV-positive and HBoV-negative ARI patients. However, a higher rate of diarrhea was observed in HBoV-positive patients. High HBoV viral loads (> 10(8) copies/mL) and diarrhea were significantly more frequent in patients with exclusive infection by HBoV and in patients with detection of HBoV VP1 mRNA than in patients with viral co-infection, detected in 72.9% of patients with HBoV. In summary, our data demonstrated that active HBoV replication was detected in a small percentage of patients with ARI and was correlated with concurrent diarrhea and lack of other viral co-infections.
Resumo:
Real-time (RT)-PCR increases diagnostic yield for bacterial meningitis and is ideal for incorporation into routine surveillance in a developing country. We validated a multiplex RT-PCR assay for Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae in Brazil. Risk factors for being culture-negative, RT-PCR positive were determined. The sensitivity of RT-PCR in cerebrospinal fluid (CSF) was 100% (95% confidence limits, 96.0%-100%) for N. meningitidis, 97.8% (85.5%-99.9%) for S. pneumoniae, and 66.7% (9.4%-99.2%) for H. influenzae. Specificity ranged from 98.9% to 100%. Addition of RT-PCR to routine microbiologic methods increased the yield for detection of S. pneumoniae, N. meningitidis, and H. influenzae cases by 52%, 85%, and 20%, respectively. The main risk factor for being culture negative and RT-PCR positive was presence of antibiotic in CSF (odds ratio 12.2, 95% CI 5.9-25.0). RT-PCR using CSF was highly sensitive and specific and substantially added to measures of meningitis disease burden when incorporated into routine public health surveillance in Brazil.
Resumo:
Serpentine receptors comprise a large family of membrane receptors distributed over diverse organisms, such as bacteria, fungi, plants and all metazoans. However, the presence of serpentine receptors in protozoan parasites is largely unknown so far. In the present study we performed a genome-wide search for proteins containing seven transmembrane domains (7TM) in the human malaria parasite Plasmodium falciparum and identified four serpentine receptor-like proteins. These proteins, denoted PfSR1, PfSR10, PfSR12 and PfSR25, show membrane topologies that resemble those exhibited by members belonging to different families of serpentine receptors. Expression of the pfsrs genes was detected by Real Time PCR in P. falciparum intraerythrocytic stages, indicating that they potentially code for functional proteins. We also found corresponding homologues for the PfSRs in five other Plasmodium species, two primate and three rodent parasites. PfSR10 and 25 are the most conserved receptors among the different species, while PfSR1 and 12 are more divergent. Interestingly, we found that PfSR10 and PfSR12 possess similarity to orphan serpentine receptors of other organisms. The identification of potential parasite membrane receptors raises a new perspective for essential aspects of malaria parasite host cell infection.
Resumo:
This study outlines the quantification of low levels of Alicyclobacillus acidoterrestris in pure cultures, since this bacterium is not inactivated by pasteurization and may remain in industrialized foods and beverages. Electroconductive polymer-modified fluorine tin oxide (FTO) electrodes and multiple nanoparticle labels were used for biosensing. The detection of A. acidoterrestris in pure cultures was performed by reverse transcription polymerase chain reaction (RT-PCR) and the sensitivity was further increased by asymmetric nested RT-PCR using electrochemical detection for quantification of the amplicon. The quantification of nested RT-PCR products by Ag/Au-based electrochemical detection was able to detect 2 colony forming units per mL (CFU mL(-1)) of spores in pure culture and low detection and quantification limits (7.07 and 23.6 nM, respectively) were obtained for the target A. acidoterrestris on the electrochemical detection bioassay.
Resumo:
Background: Restriction fragment length polymorphism (RFLP) is a common molecular assay used for genotyping, and it requires validated quality control procedures to prevent mistyping caused by impaired endonuclease activity. We have evaluated the usefulness of a plasmid-based internal control in RFLP assays. Results: Blood samples were collected from 102 individuals with acute myocardial infarction (AMI) and 108 non-AMI individuals (controls) for DNA extraction and laboratory analyses. The 1196C> T polymorphism in the toll-like receptor 4 (TLR4) gene was amplified by mismatched-polymerase chain reaction (PCR). Amplicons and pBluescript II SK-plasmid were simultaneously digested with endonuclease HincII. Fragments were separated on 2% agarose gels. Plasmid was completely digested using up to 55.2 nmL/L DNA solutions and 1 mu L PCR product. Nevertheless, plasmid DNA with 41.4 nM or higher concentrations was incompletely digested in the presence of 7 mL PCR product. In standardized conditions, TLR4 1196C> T variant was accurately genotyped. TLR4 1196T allele frequency was similar between AMI (3.1%) and controls (2.0%, p = 0.948). TLR4 SNP was not associated with AMI in this sample population. In conclusion, the plasmid-based control is a useful approach to prevent mistyping in RFLP assays, and it is validate for genetic association studies such as TLR4 1196C> T.
Resumo:
Modern lifestyle markedly changed eating habits worldwide, with an increasing demand for ready-to-eat foods, such as minimally processed fruits and leafy greens. Packaging and storage conditions of those products may favor the growth of psychrotrophic bacteria, including the pathogen Listeria monocytogenes. In this work, minimally processed leafy vegetables samples (n = 162) from retail market from Ribeirao Preto, Sao Paulo, Brazil, were tested for the presence or absence of Listeria spp. by the immunoassay Listeria Rapid Test, Oxoid. Two L. monocytogenes positive and six artificially contaminated samples of minimally processed leafy vegetables were evaluated by the Most Probable Number (MPN) with detection by classical culture method and also culture method combined with real-time PCR (RTi-PCR) for 16S rRNA genes of L monocytogenes. Positive MPN enrichment tubes were analyzed by RTi-PCR with primers specific for L. monocytogenes using the commercial preparation ABSOLUTET (TM) QPCR SYBR (R) Green Mix (ABgene, UK). Real-time PCR assay presented good exclusivity and inclusivity results and no statistical significant difference was found in comparison with the conventional culture method (p < 0.05). Moreover, RTi-PCR was fist and easy to perform, with MPN results obtained in ca. 48 h for RTi-PCR in comparison to 7 days for conventional method. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A sensitive, specific polymerase chain reaction-based assay was developed for the detection of the causal agent of ratoon stunting disease of sugarcane, Clavibacter xyli subsp. xyli. This assay uses oligonucleotide primers derived from the internal transcribed spacer region between the 16S and 23S rRNA genes of the bacterial rRNA operon. The assay is specific for C. xyli subsp. xyli and does not produce an amplification product from the template of the closely related bacterium C. xyli subsp. cynodontis, nor from other bacterial species. The assay was successfully applied to the detection of C. xyli subsp. xyli in fibrovascular fluid extracted from sugarcane and was sensitive to approximately 22 cells per PCR assay. A multiplex PCR test was also developed which identified and differentiated C. xyli subsp. xyli and C. xyli subsp. cynodontis in a single PCR assay.
Resumo:
Rapid and sensitive polymerase chain reaction (PCR) methods ape described for determination of the two 16 S rDNA subgroups of Ralstonia solanacearum, the causal agent of bacterial wilt. A third subgroup consisting of Indonesian R. solanacearum isolates belonging to Division II, the blood disease bacterium and Pseudomonas syzygii can also be identified. Primers were designed to sequences within R, solanacearum 16 S rDNA (equivalent to Escherichia coli 16 S rDNA positions 74-97, 455-475, 1454-1474), and the internal transcribed spacer region between the 16 S and 23 S rDNA genes. Different combinations of forward and reverse primers allowed selective PCR amplification of (a) R. solanacearum Division I (biovars 3, 4 and 5), (b) Division TI (biovars 1, N2, and 2) including the blood disease bacterium and P. syzygii, or (c) amplification of Division II only except for five biovar 1, 2 or N2 isolates of R. solanacearum from Indonesia, P. syzygii and the BDB. A total of 104 R. solanacearum, 14 blood disease bacterium and 10 P. syzygii isolates were tested. Simultaneous detection of species and subdivision was achieved by designing a multiplex PCR test in which a 288-base pair (bp) band is produced by all R. solanacearum isolates, and an additional 409-bp band in Division I strains.
Resumo:
A nostocalean nitrogen-fixing cyanobacterium isolated from an eutrophic freshwater reservoir located in Piracicaba, Sao Paulo, Brazil, was evaluated for the production of hepatotoxic cyclic heptapeptides, microcystins. Morphologically this new cyanobacterium strain appears closest to Nostoc, however, in the phylogenetic analysis of 165 rRNA gene it falls into a highly stable cluster distantly only related to the typical Nostoc cluster. Extracts of Nostoc sp. CENA88 cultured cells, investigated using ELISA assay, gave positive results and the microcystin profile revealed by ESI-Q-TOF/MS/MS analysis confirmed the production of [Dha(7)]MCYST-YR. Further, Nostoc sp. CENA88 genomic DNA was analyzed by PCR for sequences of mcyD, mcyE and mcyG genes of microcystin synthetase (mcy) cluster. The result revealed the presence of mcyD, mcyE and mcyG genes with similarities to those from mcy of Nostoc sp. strains 152 and IO-102-I and other cyanobacterial genera. The phylogenetic tree based on concatenated McyG, McyD and McyE amino acids clustered the sequences according to cyanobacterial genera, with exception of the Nostoc sp. CENA88 sequence, which was placed in a clade distantly related from other Nostoc strains, as previously observed also in the 165 rRNA phylogenetic analysis. The present study describes for the first time a Brazilian Nostoc microcystin producer and also the occurrence of demethyl MCYST-YR variant in this genus. The sequenced Nostoc genes involved in the microcystin synthesis can contribute to a better understanding of the toxigenicity and evolution of this cyanotoxin. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Paracoccidioides brasiliensis infections have been little studied in wild and/or domestic animals, which may represent an important indicator of the presence of the pathogen in nature. Road-killed wild animals have been used for surveillance of vectors of zoonotic pathogens and may offer new opportunities for eco-epidemiological studies of paracoccidiodomycosis (PCM). The presence of P. brasiliensis infection was evaluated by Nested-PCR in tissue samples collected from 19 road-killed animals; 3 Cavia aperea (guinea pig), 5 Cerdocyon thous (crab-eating-fox), 1 Dasypus novemcinctus (nine-banded armadillo), 1 Dasypus septemcinctus (seven-banded armadillo), 2 Didelphis albiventris (white-eared opossum), 1 Eira barbara (tayra), 2 Gallictis vittata (grison), 2 Procyon cancrivorus (raccoon) and 2 Sphiggurus spinosus (porcupine). Specific P. brasiliensis amplicons were detected in (a) several organs of the two armadillos and one guinea pig, (b) the lung and liver of the porcupine, and (c) the lungs of raccoons and grisons. P. brasiliensis infection in wild animals from endemic areas might be more common than initially postulated. Molecular techniques can be used for detecting new hosts and mapping `hot spot` areas of PCM.
Resumo:
Six Burkholderia solanacearum (formerly Pseudomonas solanacearum) genomic DNA fragments were isolated, using RAPD techniques and cloning, from the three genetically diverse strains: ACH092 (Biovar 4), ACH0158 (Biovar 2) and ACH0171 (Biovar 3) (1). One of these cloned fragments was selected because it was present constantly in all bacterial strains analysed. The remaining five clones were selected because Southern hybridisation revealed that each showed partial or complete specificity towards the strain of origin. A seventh genomic fragment showing a strain-specific distribution in Southern hybridisations was obtained by differential restriction, hybridisation and cloning of genomic DNA. Each of these clones was sequenced and primers to amplify the insert were designed. When DNA from the strain of origin was used as template, PCR amplification for each of these fragments yielded a single band on gel analysis. One pair of primers amplified the species-constant fragment of 281 bp from DNA of all B. solanacearum strains investigated, from DNA of the closely related bacterium which causes ''blood disease'' of banana (BDB) and in P. syzigii. The sensitivity of detection of B. solanacearum using these ubiquitous primers was between 1.3 and 20 bacterial cells. The feasibility and reliability of a PCR approach to detection and identification of B. solanacearum was tested in diverse strains of the bacterium in several countries and laboratories.
Resumo:
A rapid DNA extraction was used for T. cruzi detection in triatomines dry fecal spots collected on filter paper and analyzed by PCR. Fifty T infestans were fed on experimentally infected Balb/C mice with high T. cruzi parasitemia and divided into five groups of len triatomines, and 100 triatomines were infected with lower parasitemia and divided into five groups of 20 triatomines, One dry fecal spot was analyzed per group on days 1, 2, 3, 4 and 5 post feeding. Amplification targeted T. cruzi TCZ sequence and resulted positive from day 4 after bugs feeding in the two models (high and lower parasitemia). The rapid DNA isolation and PCR proposed are suitable for detection of T. cruzi DNA in in filter paper and should be considered in field research.