990 resultados para PACIFIC-OCEAN
(Table 1-4) Chemical composition of ferromanganese nodules from the South Basin of the Pacific Ocean
Resumo:
Data from deep sea drilling, linear magnetic anomalies and bathymetric measurements together with age and morphometric characteristics of seamounts have been used to construct a paleobathymetric map of the oceans 35 million years ago. A brief analysis of these results is presented.
Resumo:
To check on the assumption that metabolic products of planktonic organisms can affect the coefficient of dynamic viscosity of seawater, viscosity was measured in water samples taken from depths of 0 to 1843 m, west of the Hawaiian Islands. Obtained results showed that plankton has no effect on viscosity of water in regions of low productivity and that viscosity can be determined with high degree of accuracy from the appropriate tables.
Resumo:
The present investigation was targeted at diatom composition studies in the surface sediments (0-1 cm) sampled in the Sea of Okhotsk and the northwest Pacific in the depth range from 130 to 6110 m. The taxonomic analysis, as well as the quantitative (the diatom cell abundance per sediment dry weight unit) content and ecological group definition, was applied. Ten diatom taxa are the main body (80-100%) of the diatom assemblages: Bacterosira bathyomphala, Chaetoceros spp. (spores), Actinocyclus curvatulus, Thalassiosira latimarginata (group), T. antarctica (spores), Neodenticula seminae, Rhizosolenia hebetata f. hiemalis, Thalassiothrix longissima, Coscinodiscus marginatus, Coscinodiscus oculus iridis. The relative content of these species reflects the sedimentation conditions for different parts of the sea: the shelf, the continental slope, the open sea, and the ocean. The highest diatom content (45.6.3-60.0 mln per g of dry weight) was found for the surface sediments in the central part of the Sea of Okhotsk and the continental slope of western Kamchatka.
Resumo:
Mineral and chemical compositions, as well as conditions of formation of clay sediments in major structural elements of the Pacific Ocean floor with different ages are under consideration in the monograph. Depending on evolution of the region two ways of clay sediment formation are identified: terrigenous and authigenic. It is shown that terrigenous clay sediments predominate in marginal parts of the Pacific Ocean. Authigenic mineral formation occurring in the basal part of the sedimentary cover primarily results from removal of material from underlying basalts. This material is released during secondary alteration of the basalts due to their interaction with sea water, as well as with deep solutions.
Resumo:
In near-shore Pacific bottom sediments to the east of Japan unusually high content of free H2S ocurs. H2S resulting from bacterial reduction of sulfates from interstitial waters has a number of derivatives; pyrite dominates among them. Contents of other derivatives of H2S: sulfide sulfur and organic sulfur do not exceed 0,01%, content of organic sulfur does not exceed 0.1%. Due to reduction content of sulfates can reduce to 0,03% S. Capacity of the process of sulfate reduction, estimated by sum of all reduced forms of S - derivatives of H2S, is a function of organic matter content in sediments. Ability of bottom sediments to accumulate free H2S depends on content of reactive forms of Fe. Spatial distribution of reduced forms of S in the studied sediments is considered.
Resumo:
A new, high-resolution planktonic foraminiferal Mg/Ca-based ocean temperature record has been generated for deep sea core MD02-2496, sited offshore of Vancouver Island, Western Canada during the last deglaciation (21-12 ka). The relationship between Cordilleran Ice Sheet (CIS) retreat and changing regional ocean temperatures has been reconstructed through glaciomarine sediments in MD02-2496 that capture tidewater glacier response to surface ocean thermal forcing. At CIS maximum extent, the marine margin of the ice sheet advanced onto the continental shelf. During this interval, ocean temperatures recorded by surface ocean dwelling Globigerina bulloides remained a relatively constant ~7.5°C while subsurface dwelling Neogloboquadrina pachyderma (s.) recorded temperatures of ~5°C. These ocean temperatures were sufficiently warm to induce significant melt along the tidewater ice terminus similar to modern Alaskan tidewater glacial systems. During the deglacial retreat of the CIS, the N. pachyderma temperature record shows two distinct warming steps of ~2 and 2.5°C between 17.2-16 and 15.5-14 ka respectively, coincident with ice rafting events from the CIS, while G. bulloides records an ~3°C warming from 15 to14 ka. We hypothesize that submarine melting resulting from relatively warm ocean temperatures was an important process driving ice removal from CIS tidewater glaciers during the initial stages of deglaciation.
Resumo:
Many studies argue, based partly on Pb isotopic evidence, that recycled, subducted slabs reside in the mantle source of ocean island basalts (OIB) (Hofmann and White, 1982, doi:10.1016/0012-821X(82)90161-3; Weaver, 1991 doi:10.1016/0012-821X(91)90217-6; Lassiter, and Hauri, 1998, doi:10.1016/S0012-821X(98)00240-4). Such models, however, have remained largely untested against actual subduction zone inputs, due to the scarcity of comprehensive measurements of both radioactive parents (Th and U) and radiogenic daughter (Pb) in altered oceanic crust (AOC). Here, we discuss new, comprehensive measurements of U, Th, and Pb concentrations in the oldest AOC, ODP Site 801, and consider the effect of subducting this crust on the long-term Pb isotope evolution of the mantle. The upper 500 m of AOC at Site 801 shows >4-fold enrichment in U over pristine glass during seafloor alteration, but no net change to Pb or Th. Without subduction zone processing, ancient AOC would evolve to low 208Pb/206Pb compositions unobserved in the modern mantle (Hart and Staudigel, 1989 [Isotopic characterization and identification of recycled components, in: Crust/Mantle Recycling at Convergence Zones, Eds. S.R. Hart, L. Gqlen, NATO ASI Series. Series C: Mathematical and Physical Sciences 258, pp. 15-28, D. Reidel Publishing Company, Dordrecht-Boston, 1989]). Subduction, however, drives U-Th-Pb fractionation as AOC dehydrates in the earth's interior. Pacific arcs define mixing trends requiring 8-fold enrichment in Pb over U in AOC-derived fluid. A mass balance across the Mariana subduction zone shows that 44-75% of Pb but <10% of U is lost from AOC to the arc, and a further 10-23% of Pb and 19-40% of U is lost to the back-arc. Pb is lost shallow and U deep from subducted AOC, which may be a consequence of the stability of phases binding these elements during seafloor alteration: U in carbonate and Pb in sulfides. The upper end of these recycling estimates, which reflect maximum arc and back-arc growth rates, remove enough Pb and U from the slab to enable it to evolve rapidly (<<0.5 Ga) to sources suitable to explain the 208Pb/206Pb isotopic array of OIB, although these conditions fail to simultaneously satisfy the 207Pb/206Pb system. Lower growth rates would require additional U loss (29%) at depths beyond the zones of arc and back-arc magmagenesis, which would decrease upper mantle kappa (232Th/238U) over time, consistent with one solution to the "kappa conundrum" (Elliott et al., 1999, doi:10.1016/S0012-821X(99)00077-1). The net effects of alteration (doubling of l [238U/204Pb]) and subduction (doubling of omega [232Th/204Pb]) are sufficient to create the Pb isotopic signatures of oceanic basalts.
Resumo:
Data on internal structure, distribution, and chemical composition of iron-manganese nodules from the central part of the South Pacific are reported. Nodules with relatively high contents of Fe, Ti, Co, and Pb were found. Formation of these nodules in pelagic regions of the ocean with low sedimentation rates is tentatively ascribed by the authors to leaching of Fe, Mn, and some minor elements during submarine lava outflow and to geochemical mobility of these elements. The role of diagenetic re-distribution of ore elements during formation of nodules is also discussed.
Resumo:
The book is devoted to study of diagenetic changes of organic matter and mineral part of sediments and interstitial waters of the Pacific Ocean due to physical-chemical and microbiological processes. Microbiological studies deal with different groups of bacteria. Regularities of quantitative distribution and the role of microorganisms in geochemical processes are under consideration. Geochemical studies highlight redox processes of the early stages of sediment diagenesis, alterations of interstitial waters, regularities of variations in chemical composition of iron-manganese nodules.