993 resultados para Orthogonal Frequency Division Multiplexing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the results of femtosecond laser microstructuring of optical fibres by direct access of the fibre end face, both at the surface and several hundred microns into the fibre, to realise one-and two-dimensional grating structures and optical fibre splitters, respectively. We show the versatility of this simple but effective inscription method, where we demonstrate classic multiple slit diffraction patterns and show the potential for coarse wavelength division multiplexing for sensor signals. A key advantage for the fibre splitter is that the inscription method avoids the use of oil immersion that compensate for the fibre curvature in the standard side writing method. © 2012 SPIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theoretical and experimental investigation of the time delay characteristics of fiber Bragg grating-based Sagnac loops (FBGSLs) is presented. Analytic expressions for the phase and time delay of the FBGSL have been derived and excellent agreement is found between their predictions and experimental results for configurations incorporating uniform-period and chirped-period gratings. For symmetrical grating structures, it is found that the FBGSL time delay response is similar to that of the incorporated grating; with asymmetrical gratings, the FBGSL response is quite different. It is shown that wavelength-division-multiplexing filters exhibiting near-zero dispersion characteristics can be implemented using FBGSLs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a self-reference multiplexed fibre interferometer (MFI) by using a tunable laser and fibre Bragg grating (FBG). The optical measurement system multiplexes two Michelson fibre interferometers with shared optical path in the main part of optical system. One fibre optic interferometer is used as a reference interferometer to monitor and control the high accuracy of the measurement system under environmental perturbations. The other is used as a measurement interferometer to obtain information from the target. An active phase tracking homodyne (APTH) technique is applied for signal processing to achieve high resolution. MFI can be utilised for high precision absolute displacement measurement with different combination of wavelengths from the tuneable laser. By means of Wavelength-Division-Multiplexing (WDM) technique, MFI is also capable of realising on-line surface measurement, in which traditional stylus scanning is replaced by spatial light-wave scanning so as to greatly improve the measurement speed and robustness. © 2004 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Applying direct error counting, we assess the performance of 20 Gbit/s wavelength-division multiplexing return-to-zero differential phase-shift keying (RZ-DPSK) transmission at 0.4 bit/(s Hz) spectral efficiency for application on installed non-zero dispersion-shifted fibre based transoceanic submarine systems. The impact of the pulse duty cycle on the system performance is investigated and the reliability of the existing theoretical approaches to the BER estimation for the RZ-DPSK format is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine the correlations between the parameters of ultra-narrow off-centred filtering and pulse width on the performance of a wavelength paired Nx40Gbit/s DWDM transmission, consisting of carrier suppressed return-to-zero signal with 0.64 bit/s/Hz (without polarization-division multiplexing) spectral efficiency. © 2004 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multicore fiber (MCF) is a physical system of high practical importance. In addition to standard exploitation, MCFs may support discrete vortices that carry orbital angular momentum suitable for spatial-division multiplexing in high-capacity fiber-optic communication systems. These discrete vortices may also be attractive for high-power laser applications. We present the conditions of existence, stability, and coherent propagation of such optical vortices for two practical MCF designs. Through optimization, we found stable discrete vortices that were capable of transferring high coherent power through the MCF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicon photonics is a very promising technology for future low-cost high-bandwidth optical telecommunication applications down to the chip level. This is due to the high degree of integration, high optical bandwidth and large speed coupled with the development of a wide range of integrated optical functions. Silicon-based microring resonators are a key building block that can be used to realize many optical functions such as switching, multiplexing, demultiplaxing and detection of optical wave. The ability to tune the resonances of the microring resonators is highly desirable in many of their applications. In this work, the study and application of a thermally wavelength-tunable photonic switch based on silicon microring resonator is presented. Devices with 10μm diameter were systematically studied and used in the design. Its resonance wavelength was tuned by thermally induced refractive index change using a designed local micro-heater. While thermo-optic tuning has moderate speed compared with electro-optic and all-optic tuning, with silicon’s high thermo-optic coefficient, a much wider wavelength tunable range can be realized. The device design was verified and optimized by optical and thermal simulations. The fabrication and characterization of the device was also implemented. The microring resonator has a measured FSR of ∼18 nm, FWHM in the range 0.1-0.2 nm and Q around 10,000. A wide tunable range (>6.4 nm) was achieved with the switch, which enables dense wavelength division multiplexing (DWDM) with a channel space of 0.2nm. The time response of the switch was tested on the order of 10 μs with a low power consumption of ∼11.9mW/nm. The measured results are in agreement with the simulations. Important applications using the tunable photonic switch were demonstrated in this work. 1×4 and 4×4 reconfigurable photonic switch were implemented by using multiple switches with a common bus waveguide. The results suggest the feasibility of on-chip DWDM for the development of large-scale integrated photonics. Using the tunable switch for output wavelength control, a fiber laser was demonstrated with Erbium-doped fiber amplifier as the gain media. For the first time, this approach integrated on-chip silicon photonic wavelength control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicon photonics is a very promising technology for future low-cost high-bandwidth optical telecommunication applications down to the chip level. This is due to the high degree of integration, high optical bandwidth and large speed coupled with the development of a wide range of integrated optical functions. Silicon-based microring resonators are a key building block that can be used to realize many optical functions such as switching, multiplexing, demultiplaxing and detection of optical wave. The ability to tune the resonances of the microring resonators is highly desirable in many of their applications. In this work, the study and application of a thermally wavelength-tunable photonic switch based on silicon microring resonator is presented. Devices with 10µm diameter were systematically studied and used in the design. Its resonance wavelength was tuned by thermally induced refractive index change using a designed local micro-heater. While thermo-optic tuning has moderate speed compared with electro-optic and all-optic tuning, with silicon’s high thermo-optic coefficient, a much wider wavelength tunable range can be realized. The device design was verified and optimized by optical and thermal simulations. The fabrication and characterization of the device was also implemented. The microring resonator has a measured FSR of ~18 nm, FWHM in the range 0.1-0.2 nm and Q around 10,000. A wide tunable range (>6.4 nm) was achieved with the switch, which enables dense wavelength division multiplexing (DWDM) with a channel space of 0.2nm. The time response of the switch was tested on the order of 10 us with a low power consumption of ~11.9mW/nm. The measured results are in agreement with the simulations. Important applications using the tunable photonic switch were demonstrated in this work. 1×4 and 4×4 reconfigurable photonic switch were implemented by using multiple switches with a common bus waveguide. The results suggest the feasibility of on-chip DWDM for the development of large-scale integrated photonics. Using the tunable switch for output wavelength control, a fiber laser was demonstrated with Erbium-doped fiber amplifier as the gain media. For the first time, this approach integrated on-chip silicon photonic wavelength control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a framework for estimating the quality of transmission (QoT) of a new lightpath before it is established, as well as for calculating the expected degradation it will cause to existing lightpaths. The framework correlates the QoT metrics of established lightpaths, which are readily available from coherent optical receivers that can be extended to serve as optical performance monitors. Past similar studies used only space (routing) information and thus neglected spectrum, while they focused on oldgeneration noncoherent networks. The proposed framework accounts for correlation in both the space and spectrum domains and can be applied to both fixed-grid wavelength division multiplexing (WDM) and elastic optical networks. It is based on a graph transformation that exposes and models the interference between spectrum-neighboring channels. Our results indicate that our QoT estimates are very close to the actual performance data, that is, to having perfect knowledge of the physical layer. The proposed estimation framework is shown to provide up to 4 × 10-2 lower pre-forward error correction bit error ratio (BER) compared to theworst-case interference scenario,which overestimates the BER. The higher accuracy can be harvested when lightpaths are provisioned with low margins; our results showed up to 47% reduction in required regenerators, a substantial savings in equipment cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we will demonstrate the possibility of opening a new telecommunications transmission window around the 2 μm wavelength, in order to exploit the potential low loss of hollow-core photonic bandgap fibers, with the benefits of significantly lower non-linearity and latency. We will show recent efforts developing a dense wavelength division multiplexing testbed at this waveband, with 100 GHz spacing wavelength channels and 105 Gbit/s total capacity achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamically reconfigurable time-division multiplexing (TDM) dense wavelength division multiplexing (DWDM) long-reach passive optical networks (PONs) can support the reduction of nodes and network interfaces by enabling a fully meshed flat optical core. In this paper we demonstrate the flexibility of the TDM-DWDM PON architecture, which can enable the convergence of multiple service types on a single physical layer. Heterogeneous services and modulation formats, i.e. residential 10G PON channels, business 100G dedicated channel and wireless fronthaul, are demonstrated co-existing on the same long reach TDM-DWDM PON system, with up to 100km reach, 512 users and emulated system load of 40 channels, employing amplifier nodes with either erbium doped fiber amplifiers (EDFAs) or semiconductor optical amplifiers (SOAs). For the first time end-to-end software defined networking (SDN) management of the access and core network elements is also implemented and integrated with the PON physical layer in order to demonstrate two service use cases: a fast protection mechanism with end-to-end service restoration in the case of a primary link failure; and dynamic wavelength allocation (DWA) in response to an increased traffic demand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amorphous SiC heterostructures built as a double pin device has a non linear spectral gain which is a function of the signal wavelength that impinges on its front or back surface. Illuminating the device with several single wavelength data channels in the visible spectrum allows for Wavelength Division Multiplexing (WDM) digital communication. Using fixed ultra-violet illumination at the front or back surfaces enables the recovery of the multiplexed channels. Five channels, each using a single wavelength which is modulated by a Manchester coded signal at 12,000 bps, form a frame with 1024 bits with a preamble for signal intensity and synchronisation purposes. Results show that the clustering of the received signal enables the successful recovery of the five channel data using the front and back illumination of the surfaces of the double pin photo device. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Avec l’avènement des objets connectés, la bande passante nécessaire dépasse la capacité des interconnections électriques et interface sans fils dans les réseaux d’accès mais aussi dans les réseaux coeurs. Des systèmes photoniques haute capacité situés dans les réseaux d’accès utilisant la technologie radio sur fibre systèmes ont été proposés comme solution dans les réseaux sans fil de 5e générations. Afin de maximiser l’utilisation des ressources des serveurs et des ressources réseau, le cloud computing et des services de stockage sont en cours de déploiement. De cette manière, les ressources centralisées pourraient être diffusées de façon dynamique comme l’utilisateur final le souhaite. Chaque échange nécessitant une synchronisation entre le serveur et son infrastructure, une couche physique optique permet au cloud de supporter la virtualisation des réseaux et de les définir de façon logicielle. Les amplificateurs à semi-conducteurs réflectifs (RSOA) sont une technologie clé au niveau des ONU(unité de communications optiques) dans les réseaux d’accès passif (PON) à fibres. Nous examinons ici la possibilité d’utiliser un RSOA et la technologie radio sur fibre pour transporter des signaux sans fil ainsi qu’un signal numérique sur un PON. La radio sur fibres peut être facilement réalisée grâce à l’insensibilité a la longueur d’onde du RSOA. Le choix de la longueur d’onde pour la couche physique est cependant choisi dans les couches 2/3 du modèle OSI. Les interactions entre la couche physique et la commutation de réseaux peuvent être faites par l’ajout d’un contrôleur SDN pour inclure des gestionnaires de couches optiques. La virtualisation réseau pourrait ainsi bénéficier d’une couche optique flexible grâce des ressources réseau dynamique et adaptée. Dans ce mémoire, nous étudions un système disposant d’une couche physique optique basé sur un RSOA. Celle-ci nous permet de façon simultanée un envoi de signaux sans fil et le transport de signaux numérique au format modulation tout ou rien (OOK) dans un système WDM(multiplexage en longueur d’onde)-PON. Le RSOA a été caractérisé pour montrer sa capacité à gérer une plage dynamique élevée du signal sans fil analogique. Ensuite, les signaux RF et IF du système de fibres sont comparés avec ses avantages et ses inconvénients. Finalement, nous réalisons de façon expérimentale une liaison point à point WDM utilisant la transmission en duplex intégral d’un signal wifi analogique ainsi qu’un signal descendant au format OOK. En introduisant deux mélangeurs RF dans la liaison montante, nous avons résolu le problème d’incompatibilité avec le système sans fil basé sur le TDD (multiplexage en temps duplexé).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cognitive radio (CR) was developed for utilizing the spectrum bands efficiently. Spectrum sensing and awareness represent main tasks of a CR, providing the possibility of exploiting the unused bands. In this thesis, we investigate the detection and classification of Long Term Evolution (LTE) single carrier-frequency division multiple access (SC-FDMA) signals, which are used in uplink LTE, with applications to cognitive radio. We explore the second-order cyclostationarity of the LTE SC-FDMA signals, and apply results obtained for the cyclic autocorrelation function to signal detection and classification (in other words, to spectrum sensing and awareness). The proposed detection and classification algorithms provide a very good performance under various channel conditions, with a short observation time and at low signal-to-noise ratios, with reduced complexity. The validity of the proposed algorithms is verified using signals generated and acquired by laboratory instrumentation, and the experimental results show a good match with computer simulation results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We did a numerical investigation of the propagation of short light pulses in the region of 1.55 mu m and the conversion efficiency (CE) for the four wave mixing generation (FWM) of ordinary and dispersion decreasing fibers for use in wavelength division multiplexing (WDM) systems, Our simulations studies three different profiles, linear, hyperbolic. and constant, One conclude that for all the profiles there is decrease of the conversion efficiency with the increase in the channel separation. The hyperbolic profile present a higher efficiency of around 1000 above in magnitude compared with the others profiles at 0.2 nm of channel separation. We calculate the conversion efficiency versus the fiber length for the three profiles. The conversion efficiency for the hyperbolic profile is higher when compared to the constant and linear profiles. The other interesting point of the hyperbolic profile is that the increase of the CE in the beginning of the fiber does not show my oscillation in the CE value (log eta), which was observed for the constant and linear profiles. For all the profiles there is an increase of the conversion efficiency with the increase of the pump power. The compression factor C-i for the generated FWM signal at omega(3) was measured along the DDF's and the constant profile fibers. One can conclude that with the use of decreasing dispersion profile (DDF) fibers one can have a control of the (CE) conversion efficiency and the compression factor of the four wave mixing (FWM) generation in WDM systems. (c) 2005 Elsevier B.V. All rights reserved.