925 resultados para Oregon. State Fire Marshal
Resumo:
As the global population becomes increasingly urban, research is needed to explore how local culture, land use, and policy will influence urban natural resource management. We used a broad-scale comparative approach and survey of residents within the Portland (Oregon)-Vancouver (Washington) metropolitan areas, USA, two states with similar geographical and ecological characteristics, but different approaches to land-use planning, to explore resident perceptions about natural resources at three scales of analysis: property level (“at or near my house”), neighborhood (“within a 20-minute walk from my house”), and metro level (“across the metro area”). At the metro-level scale, nonmetric multidimensional scaling revealed that the two cities were quite similar. However, affinity for particular landscape characteristics existed within each city with the greatest difference generally at the property-level scale. Portland respondents expressed affinity for large mature trees, tree-lined streets, public transportation, and proximity to stores and services. Vancouver respondents expressed affinity for plentiful accessible parking. We suggest three explanations that likely are not mutually exclusive. First, respondents are segmented based on preferences for particular amenities, such as convenience versus commuter needs. Second, historical land-use and tax policy legacies may influence individual decisions. Third, more environmentally attuned worldviews may influence an individual’s desire to produce environmentally friendly outcomes. Our findings highlight the importance of acknowledging variations in residents’ affinities for landscape characteristics across different scales and locations because these differences may influence future land-use policies about urban natural resources.
Resumo:
In this issue...Geophysics, Bob Hutt, Oregon State, Antarctica, Tech Dances, Frontier Conference, Montana Folklore, Montana Board of Regents
Resumo:
The seasonal climate drivers of the carbon cy- cle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combina- tion of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measure- ments and 35 litter productivity measurements), their asso- ciated canopy photosynthetic capacity (enhanced vegetation index, EVI) and climate, we ask how carbon assimilation and aboveground allocation are related to climate seasonal- ity in tropical forests and how they interact in the seasonal carbon cycle. We found that canopy photosynthetic capacity seasonality responds positively to precipitation when rain- fall is < 2000 mm yr-1 (water-limited forests) and to radia- tion otherwise (light-limited forests). On the other hand, in- dependent of climate limitations, wood productivity and lit- terfall are driven by seasonal variation in precipitation and evapotranspiration, respectively. Consequently, light-limited forests present an asynchronism between canopy photosyn- thetic capacity and wood productivity. First-order control by precipitation likely indicates a decrease in tropical forest pro- ductivity in a drier climate in water-limited forest, and in cur- rent light-limited forest with future rainfall < 2000 mm yr-1.
Resumo:
"Serial no. 100-89."
Resumo:
"Serial no. 100-87."
Resumo:
Includes bibliographical references and index.
Resumo:
Running title: Railroad and public utility laws of Oregon.
Resumo:
Mode of access: Internet.
Resumo:
Period covered by reports is irregular.
Resumo:
Includes bibliographical references (p. 34).
Resumo:
At head of title: Published by authority.