914 resultados para Operational indicators
Resumo:
The aim of the study was to quantify the variability on biological indicators of exposure between men and women for three well known solvents: methyl ethyl ketone, 1-methoxy-2-propanol and 1,1,1-trichloroethane. Another purpose was to explore the effect of selected CYP2E1 polymorphisms on the toxicokinetic profile. Controlled human exposures were carried out in a 12m(3) exposure chamber for each solvent separately, during 6h and at half of the threshold limit value. The human volunteers groups were composed of ten young men and fifteen young women, including ten women using hormonal contraceptive. An analysis of variance mainly showed an effect on the urinary levels of several biomarkers of exposure among women due to the use of hormonal contraceptive, with an increase of more than 50% in metabolites concentrations and a decrease of up to 50% in unchanged substances concentrations, suggesting an increase in their metabolism rate. The results also showed a difference due to the genotype CYP2E1*6, when exposed to methyl ethyl ketone, with a tendency to increase CYP2E1 activity when volunteers were carriers of the mutant allele. Our study suggests that not only physiological differences between men and women but also differences due to sex hormones levels can have an impact on urinary concentrations of several biomarkers of exposure. The observed variability due to sex among biological exposure indices can lead to misinterpretation of biomonitoring results. This aspect should have its place in the approaches for setting limits of occupational exposure. [Authors]
Resumo:
Excessive daytime sleepiness underpins a large number of the reported motor vehicle crashes. Fair and accurate field measures are needed to identify at-risk drivers who have been identified as potentially driving in a sleep deprived state on the basis of erratic driving behavior. The purpose of this research study was to evaluate a set of cognitive tests that can assist Motor Vehicle Enforcement Officers on duty in identifying drivers who may be engaged in sleep impaired driving. Currently no gold standard test exists to judge sleepiness in the field. Previous research has shown that Psychomotor Vigilance Task (PVT) is sensitive to sleep deprivation. The first goal of the current study was to evaluate whether computerized tests of attention and memory, more brief than PVT, would be as sensitive to sleepiness effects. The second goal of the study was to evaluate whether objective and subjective indices of acute and cumulative sleepiness predicted cognitive performance. Findings showed that sleepiness effects were detected in three out of six tasks. Furthermore, PVT was the only task that showed a consistent slowing of both ‘best’, i.e. minimum, and ‘typical’ responses, median RT due to sleepiness. However, PVT failed to show significant associations with objective measures of sleep deprivation (number of hours awake). The findings indicate that sleepiness tests in the field have significant limitations. The findings clearly show that it will not be possible to set absolute performance thresholds to identify sleep-impaired drivers based on cognitive performance on any test. Cooperation with industry to adjust work and rest cycles, and incentives to comply with those regulations will be critical components of a broad policy to prevent sleepy truck drivers from getting on the road.
Resumo:
The research reported in this series of article aimed at (1) automating the search of questioned ink specimens in ink reference collections and (2) at evaluating the strength of ink evidence in a transparent and balanced manner. These aims require that ink samples are analysed in an accurate and reproducible way and that they are compared in an objective and automated way. This latter requirement is due to the large number of comparisons that are necessary in both scenarios. A research programme was designed to (a) develop a standard methodology for analysing ink samples in a reproducible way, (b) comparing automatically and objectively ink samples and (c) evaluate the proposed methodology in forensic contexts. This report focuses on the last of the three stages of the research programme. The calibration and acquisition process and the mathematical comparison algorithms were described in previous papers [C. Neumann, P. Margot, New perspectives in the use of ink evidence in forensic science-Part I: Development of a quality assurance process for forensic ink analysis by HPTLC, Forensic Sci. Int. 185 (2009) 29-37; C. Neumann, P. Margot, New perspectives in the use of ink evidence in forensic science-Part II: Development and testing of mathematical algorithms for the automatic comparison of ink samples analysed by HPTLC, Forensic Sci. Int. 185 (2009) 38-50]. In this paper, the benefits and challenges of the proposed concepts are tested in two forensic contexts: (1) ink identification and (2) ink evidential value assessment. The results show that different algorithms are better suited for different tasks. This research shows that it is possible to build digital ink libraries using the most commonly used ink analytical technique, i.e. high-performance thin layer chromatography, despite its reputation of lacking reproducibility. More importantly, it is possible to assign evidential value to ink evidence in a transparent way using a probabilistic model. It is therefore possible to move away from the traditional subjective approach, which is entirely based on experts' opinion, and which is usually not very informative. While there is room for the improvement, this report demonstrates the significant gains obtained over the traditional subjective approach for the search of ink specimens in ink databases, and the interpretation of their evidential value.
Resumo:
Research projects aimed at proposing fingerprint statistical models based on the likelihood ratio framework have shown that low quality finger impressions left on crime scenes may have significant evidential value. These impressions are currently either not recovered, considered to be of no value when first analyzed by fingerprint examiners, or lead to inconclusive results when compared to control prints. There are growing concerns within the fingerprint community that recovering and examining these low quality impressions will result in a significant increase of the workload of fingerprint units and ultimately of the number of backlogged cases. This study was designed to measure the number of impressions currently not recovered or not considered for examination, and to assess the usefulness of these impressions in terms of the number of additional detections that would result from their examination.
Resumo:
OBJECTIVE: Accuracy studies of Patient Safety Indicators (PSIs) are critical but limited by the large samples required due to low occurrence of most events. We tested a sampling design based on test results (verification-biased sampling [VBS]) that minimizes the number of subjects to be verified. METHODS: We considered 3 real PSIs, whose rates were calculated using 3 years of discharge data from a university hospital and a hypothetical screen of very rare events. Sample size estimates, based on the expected sensitivity and precision, were compared across 4 study designs: random and VBS, with and without constraints on the size of the population to be screened. RESULTS: Over sensitivities ranging from 0.3 to 0.7 and PSI prevalence levels ranging from 0.02 to 0.2, the optimal VBS strategy makes it possible to reduce sample size by up to 60% in comparison with simple random sampling. For PSI prevalence levels below 1%, the minimal sample size required was still over 5000. CONCLUSIONS: Verification-biased sampling permits substantial savings in the required sample size for PSI validation studies. However, sample sizes still need to be very large for many of the rarer PSIs.
Resumo:
ABSTRACT: BACKGROUND: The ongoing increase in life expectancy in developed countries is associated with changes in the shape of the survival curve. These changes can be characterized by two main, distinct components: (i) the decline in premature mortality, i.e., the concentration of deaths around some high value of the mean age at death, also termed rectangularization of the survival curve; and (ii) the increase of this mean age at death, i.e., longevity, which directly reflects the reduction of mortality at advanced ages. Several recent observations suggest that both mechanisms are simultaneously taking place. METHODS: We propose a set of indicators aiming to quantify, disentangle, and compare the respective contribution of rectangularization and longevity increase to the secular increase of life expectancy. These indicators, based on a nonparametric approach, are easy to implement. RESULTS: We illustrate the method with the evolution of the Swiss mortality data between 1876 and 2006. Using our approach, we are able to say that the increase in longevity and rectangularization explain each about 50% of the secular increase of life expectancy. CONCLUSION: Our method may provide a useful tool to assess whether the contribution of rectangularization to the secular increase of life expectancy will remain around 50% or whether it will be increasing in the next few years, and thus whether concentration of mortality will eventually take place against some ultimate biological limit.
Resumo:
Abstract
Resumo:
Different components of global change can have interacting effects on biodiversity and this may influence our ability to detect the specific consequences of climate change through biodiversity indicators. Here, we analyze whether climate change indicators can be affected by land use dynamics that are not directly determined by climate change. To this aim, we analyzed three community-level indicators of climate change impacts that are based on the optimal thermal environment and averagelatitude of the distribution of bird species present at local communities. We used multiple regression models to relate the variation in climate change indicators to: i) environmental temperature; and ii) three landscape gradients reflecting important current land use change processes (land abandonment, fire impacts and urbanization), all of them having forest areas at their positive extremes. We found that, with few exceptions, landscape gradients determined the figures of climate change indicators as strongly as temperature. Bird communities in forest habitats had colder-dwelling bird species with more northerndistributions than farmland, burnt or urban areas. Our results show that land use changes can reverse, hide or exacerbate our perception of climate change impacts when measured through community-level climate change indicators. We stress the need of an explicit incorporation of the interactions between climate change and land use dynamics to understand what are current climate change indicators indicating and be able to isolate real climate change impacts
Resumo:
Compartmental and physiologically based toxicokinetic modeling coupled with Monte Carlo simulation were used to quantify the impact of biological variability (physiological, biochemical, and anatomic parameters) on the values of a series of bio-indicators of metal and organic industrial chemical exposures. A variability extent index and the main parameters affecting biological indicators were identified. Results show a large diversity in interindividual variability for the different categories of biological indicators examined. Measurement of the unchanged substance in blood, alveolar air, or urine is much less variable than the measurement of metabolites, both in blood and urine. In most cases, the alveolar flow and cardiac output were identified as the prime parameters determining biological variability, thus suggesting the importance of workload intensity on absorbed dose for inhaled chemicals.
Resumo:
The combined effect of pressure and mild temperature treatments on bovine sarcoplasmic proteins and quality parameters was assessed. M. longissimus dorsi samples were pressurised in a range of 200–600 MPa and 10–30 °C. High Pressure Processing (HPP) induced a reduction of protein solubility (p < 0.001) compared to non-treated controls (NT), more pronounced above 200 MPa. HPP at pressures higher than 200 MPa induced a strong modification (p < 0.001) of meat colour and a reduction of water holding capacity (WHC). SDS–PAGE analysis demonstrated that HPP significantly modified the composition of the sarcoplasmic protein fraction. The pressurisation temperature mainly affected protein solubility and colour; a smaller effect was observed on protein profiles. Significant correlations (p < 0.001) between sarcoplasmic protein solubility and both expressible moisture (r = −0.78) and colour parameters (r = −0.81 to −0.91) suggest that pressure induced denaturation of sarcoplasmic proteins could influence to some extent WHC and colour modifications of beef. Changes in protein band intensities were also significantly correlated with protein solubility, meat lightness and expressible moisture. These results describe the changes induced by HPP on sarcoplasmic proteins and confirm a relationship between modification of the sarcoplasmic protein fraction and alteration of meat quality characteristics