921 resultados para Oocytes -- physiology
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Experiments evaluated the ability of follicular fluid (FF), dilauroylphosphatidylcholine (PC12) and the calcium ionophore A23187 (A23187) to induce capacitation in stallion and bull spermatozoa, determined by the ability of the spermatozoa to penetrate zona-free hamster, bovine and equine oocytes. Spermatozoa suspensions were incubated at 37 degreesC in one of the following treatments: 1) a modified Tyrode's medium (BGM3) alone, 2) BGM3 + FF; 3) BGM3 + PC12; 4) BGM3 + FF + PC12; 5) BGM3 + A23187; and 6) BGM3 + FF + A23187. Treated spermatozoa were incubated with zona-free hamster, bovine and equine oocytes for 3 h, after which oocytes were stained to assess spermatozoa penetration. The number of hamster oocytes penetrated by spermatozoa incubated in BGM3 alone (1/30) or in presence of FF (2/31) was significantly lower (P < 0.05) than by spermatozoa treated with PC12 or A23187 (16/30 and 17/30, respectively). Processing stallion spermatozoa either by a swim-up procedure or by centrifugation through a Percoll gradient increased the percentages of motile spermatozoa in the final sample, and spermatozoa collected by both processes penetrated similar numbers of zona-free hamster oocytes (P > 0.05). Although treating spermatozoa with PC12 or A23187 enabled both stallion and bull spermatozoa to penetrate oocytes, higher numbers of bovine oocytes were penetrated by bull spermatozoa (25/30) than by stallion spermatozoa (4/30) regardless of spermatozoal treatment. However, the number of zona-free hamster and equine oocytes penetrated by bull spermatozoa (25/30 and 12/18 respectively) and stallion spermatozoa (17/30 and 15/21 respectively) were similar (P > 0.05). We conclude that both PC12 and A23187 capacitate stallion and bull spermatozoa sufficiently to permit the acrosome reaction to occur, enabling spermatozoa to penetrate homologous and heterologous zona-free oocytes. (C) 2001 by Elsevier B.V.
Resumo:
Buffalo ovaries were collected from a slaughterhouse (Frigol, Brazil) and transported to the laboratory in saline solution at 36 degrees C. The ovaries were dissected to realize the evaluations (weight, length, width and height of the ovary; corpus luteum and dominant follicle diameters). The Cumulus-oocyte complexes (COCs) were recovered by aspiration of 2-8 mm follicles. Selected COCs were matured in TCM 199 supplemented with 10% fetal bovine serum, sodium pyruvate, LH, FSH, estradiol and gentamicin. In vitro maturation was carried out at 38.5 degrees C for 22-24 h and 34-36 h. For the evaluation of the nuclear maturation the oocytes were placed in TCM 199 medium added with type v hialuronidase where the granulosa cells were extracted. The denuded oocytes were transferred to 10 mu l of Hoescht 33342 and the chromosomic configuration was evaluated. The oocytes were classified according to meiosis stage in: Germinal Vesicle, Germinal Vesicle Breakdown, Metaphase I, Metaphase II and Degenerated. The means of weight, length, width and height of the ovary were 3.83 g, 2.27 cm, 1.08 cm and 1.56 cm, respectively. The means of corpus luteum and dominant follicle diameters were 1.40 cm and 7.77 mm. The proportion of oocytes that reached metaphase II stage was: 36.68%.
Resumo:
The current study evaluates the ability of equine oocytes matured in different conditions to undergo nuclear and cytoplasmic maturation.. After oocyte transfer, embryonic development was diagnosed at 1.5 and 90 days of gestation. For each group, immature oocytes obtained from slaughterhouse ovaries were matured in vitro (5 replicates). In experiment I, three different media were tested. HTF:BME, SOFaa, and TCM 199. In experiment 11, the HTF:BME was chosen as maturation medium containing pFSH, eFSH, or eFSH + eGH. Nuclear maturation was estimated after stripping the oocytes and staining with Hoechst 33342. The evaluation of cytoplasmic maturation was performed by transmission electron microscopy. For oocyte transfer, six non-cycling recipient mares were used, and 8 to 15 oocytes were transferred in each mare. In experiment I, the results showed no differences (P > .05) in nuclear maturation (MII) among experimental groups. The percentage of MII was 29.3 ( +/- 9.6), 23.4 ( +/- 8.4), and 13.5 ( +/- 12.4) for HTF:BME, SOF, and TCM, respectively. In experiment II, all media tested were efficient in inducing metaphase II. Also, no statistical differences (P > .05) were observed in percentages of nuclear maturation rates when porcine (37.1 +/- 22.4) or equine (25.8 +/- 8.2) FSH were used, or when eFSH + eGH was added to HTF:BME (29.4 +/- 12.3). The analysis of cytoplasmic morphology of oocytes cultured in TCM 199 and SOFaa showed signs of incomplete cytoplasmic maturation and premature cortical reaction. Meanwhile, oocytes cultured in HTF:BME medium presented cytoplasmic characteristics similar to those described by others for in vivo-matured oocytes. The addition of eFSH to the HTF:BME medium resulted in an improvement of cytoplasmic morphology. After oocyte transfer, two mares became pregnant, one from pFSH group and one from eFSH+eGH group. These results indicate that although in vitro matured equine oocytes are capable of fertilization and embryonic development, the percentage of competent oocytes is still low.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study examined the effect of treating mares with equine pituitary extract (EPE) alone or in combination with hCG on the recovery rate of immature follicles by transvaginal follicular aspiration (ovum pick-up; OPU). Ten normally cycling crossbred mares aged 3-15 years and weighing 350-400 kg were subjected to each of three treatments in a random sequence with each exposure to a new treatment separated by a rest cycle during which a spontaneous ovulation occurred. The treatments were (1) superovulated with 25 mg EPE and treated with 2500 IU hCG, (2) superovulation with 25 mg EPE, and (3) control (no exogenous treatment). Treatments 7 days after spontaneous ovulation; and all the follicles > 10 mm were aspirated 24 h after the largest follicle achieved a diameter of 27-30 mm for control group, and most follicles reached 22-27 mm for the EPE alone treatment. To the group EPE+hCG, when the follicles reached 22-27 mm, hCG was administered, 24 h before OPU. Superovulation increased the number of follicles available for aspiration. The total number of follicles available for aspiration was 61 in the EPE/hCG group. 63 in the EPE group and 42 in the control. The proportion of follicles aspirated varied from 63.5% to 73.8%. Oocyte recovery rate ranged from 15.0% to 16.7% and the proportion of mares that yielded at least one oocyte was 70% (7/10) in the EPE/hCG, 60% (6/10) in the EPE alone and 50% (5/10) in control group. The EPE/hCG treatment had a higher proportion of follicles with expanded granulose cells (64.4%) than the control (3.3%: p < 0.05) and the EPE treatment (25.0%). The intervals from spontaneous ovulation to aspiration were similar for all treatments (11-12 days). However, superovulatory treatment significantly increased the aspiration to ovulation interval from 15 +/- 4 days for control to 27 +/- 15 days for EPE (p < 0.05) and to 23 +/- 13 days for EPE/hCG treatment with commensurate increases in the time between spontaneous ovulations. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Thermal and water balance are coupled in anurans, and species with particularly permeable skin avoid overheating more effectively than minimizing variance of body temperature. In turn, temperature affects muscle performance in several ways, so documenting the mean and variance of body temperature of active frogs can help explain variation in behavioral performance. The two types of activities studied in most detail, jumping and calling, differ markedly in duration and intensity, and there are distinct differences in the metabolic profile and fiber type of the supporting muscles. Characteristics of jumping and calling also vary significantly among species, and these differences have a number of implications that we discuss in some detail throughout this paper. One question that emerges from this topic is whether anuran species exhibit activity temperatures that match the temperature range over which they perform best. Although this seems the case, thermal preferences are variable and may not necessarily reflect typical activity temperatures. The performance versus temperature curves and the thermal limits for anuran activity reflect the thermal ecology of species more than their systematic position. Anuran thermal physiology, therefore, seems to be phenotypically plastic and susceptible to adaptive evolution. Although generalizations regarding the mechanistic basis of such adjustments are not yet possible, recent attempts have been made to reveal the mechanistic basis of acclimation and acclimatization. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)