884 resultados para Online flow theory
Resumo:
A numerical model has been developed for simulating the rapid solidification processing (RSP) of Ni-Al alloy in order to predict the resultant phase composition semi-quantitatively during RSP. The present model couples the initial nucleation temperature evaluating method based on the time dependent nucleation theory, and solidified volume fraction calculation model based on the kinetics model of dendrite growth in undercooled melt. This model has been applied to predict the cooling curve and the volume fraction of solidified phases of Ni-Al alloy in planar flow casting. The numerical results agree with the experimental results semi-quantitatively.
Resumo:
Nanoindentation simulations on a binary metallic glass were performed under various strain rates by using molecular dynamics. The rate-dependent serrated plastic flow was clearly observed, and the spatiotemporal behavior of its underlying irreversible atomic rearrangement was probed. Our findings clearly validate that the serration is a temporally inhomogeneous characteristic of such rearrangements and not directly dependent on the resultant shear-banding spatiality. The unique spatiotemporal distribution of shear banding during nanoindentation is highlighted in terms of the potential energy landscape (PEL) theory.
Resumo:
In the present paper, a liquid (or melt) film of relatively high temperature ejected from a vessel and painted on the-moving solid film is analyzed by using the second-order fluid model of the non-Newtonian fluid. The thermocapillary flow driven by the temperature gradient on the free surface of a Newtonian liquid film was discussed before. The effect of rheological fluid on thermocapillary flow is considered in the present paper. The analysis is based on the approximations of lubrication theory and perturbation theory. The equation of liquid height and the process of thermal hydrodynamics of the non-Newtonian liquid film are obtained, and the case of weak effect of the rheological fluid is solved in detail.
Resumo:
A fifth-order theory for solving the problem of interaction between Stokes waves and exponential profile currents is proposed. The calculated flow fields are compared with measurements. Then the errors caused by the linear superposition method and approximate theory are discussed. It is found that the total wave-current field consists of pure wave, pure current and interaction components. The shear current not only directly changes the flow field, but also indirectly does sx, by changing the wave parameters due to wave-current interaction. The present theory can predict the wave kinematics on shear currents satisfactorily. The linear superposition method may give rise to more than 40% loading error in extreme conditions. When the apparent wave period is used and the Wheeler stretching method is adopted to extrapolate the current, application of the approximate theory is the best.
Resumo:
To gain some insight into the behaviour of low-gravity flows in the material processing in space, an approximate theory has been developed for the convective motion of fluids with a small Grashof number Gr. The expansion of the variables into a series of Gr reduces the Boussinesq equation to a system of weakly coupled linearly inhomogeneous equations. Moreover, the analogy concept is proposed and utilized in the study of the plate bending problems in solid mechanics. Two examples are investigated in detail, i. e. the 2-dimensional steady flows in either circular or square infinite closed cylinder, which is horizontally imposed at a specified temperature of linear distribution on the boundaries. The results for stream function ψ, velocity u and temperature T are provided. The analysis of the influences of some parameters such as the Grashof number Gr and the Prandtl number Pr, on motions will lead to several interesting conclusions. The theory seems to be useful for seeking for an analytical solutions. At least, it will greatly simplify the complicated problems originally governed by the Navier-Stokes equation including buoyancy. It is our hope that the theory might be applicable to unsteady or 3-dimensional cases in future.
Resumo:
A theoretical model for gain saturation in gas flow and chemical lasers is presented. The theory is applicable to all possible numerical values of τ/τc, where τ is the characteristie flow time for the flowing gas to move across the laser action region and τc is the characteristic collision relaxation time. The saturation effects of the convection and the "source flow" of the inverted population are revealed. A general relation of gain coefficient and some new gain saturation laws are obtained. For the special case of τ/τc1, the present theoretical results agree with the experimental results on the "anomalous" saturation phenomena in the supersonic diffusion HF chemical laser determined recently by Gross and Coffer[8]. The theory also agrees with the measured results of saturation intensity varying with τ/τc in gas flow CO2 lasers[7]. For the special case of τ/τc1, the present theory is consistent with both the standard theory[1] for gas lasers where the gas has no macroscopic motion and the known gain saturation theory[2-5] for gas flow and chemical lasers.
Resumo:
In this paper, processes in the early stages of vortex motion and the development of flow structure behind an impulsively-started circular cylinder at high Reynolds number are investigated by combining the discrete vortex model with boundary layer theory, considering the separation of incoming flow boundary layer and rear shear layer in the recirculating flow region. The development of flow structure and vortex motion, particularly the formation and development of secondary vortex and a pair of secondary vortices and their effect on the flow field are calculated. The results clearly show that the flow structure and vortices motion went through a series of complicated processes before the symmetric main vortices change into asymmetric: development of main vortices induces secondary vortices; growth of the secondary vortices causes the main vortex sheets to break off and causes the symmetric main vortices to become “free” vortices, while a pair of secondary vortices is formed; then the vortex sheets, after breaking off, gradually extend downstream and the structure of a pair of secondary vortices becomes relaxed. These features of vortex motion look very much like the observed features in some available flow field visualizations. The action of the secondary vortices causes the main vortex sheets to break off and converts the main vortices into free vortices. This should be the immediate cause leading to the instability of the motion of the symmetric main vortices. The flow field structure such as the separation position of boundary layer and rear shear layer, the unsteady pressure distributions and the drag coefficient are calculated. Comparison with other results or experiments is also made.
Resumo:
A new method is proposed to solve the closure problem of turbulence theory and to drive the Kolmogorov law in an Eulerian framework. Instead of using complex Fourier components of velocity field as modal parameters, a complete set of independent real parameters and dynamic equations are worked out to describe the dynamic states of a turbulence. Classical statistical mechanics is used to study the statistical behavior of the turbulence. An approximate stationary solution of the Liouville equation is obtained by a perturbation method based on a Langevin-Fokker-Planck (LFP) model. The dynamic damping coefficient eta of the LFP model is treated as an optimum control parameter to minimize the error of the perturbation solution; this leads to a convergent integral equation for eta to replace the divergent response equation of Kraichnan's direct-interaction (DI) approximation, thereby solving the closure problem without appealing to a Lagrangian formulation. The Kolmogorov constant Ko is evaluated numerically, obtaining Ko = 1.2, which is compatible with the experimental data given by Gibson and Schwartz, (1963).
Resumo:
For high-speed-flow lasers, the one-dimensional and first-order approximate treatment in[1] under approximation of geometrical optics is improved still within the scope of approx-imation of geometrical optics. The strict accurate results are obtained, and what is more,two- and three-dimensional treatments are done. Thus for two- and three-dimensional cases, thestable oscillation condition, the formulae of power output and analytical expression of modesunder approximation of geometrical optics (in terms of gain function) are derived. Accord-ing to the present theory, one-and two-dimensional calculations for the typical case of Gerry'sexperiment are presented. All the results coincide well with the experiment and are better thanthe results obtained in [1].In addition, the applicable scope of Lee's stable oscillation condition given by [1] is ex-panded; the condition for the approximation of gcometrical optics to be applied to mode con-structure in optical cavity is obtained for the first time and the difference between thiscondition and that for free space is also pointed out in the present work.
Resumo:
The two-dimensional accelerating theory about solar wind is applied to the study of theaccelerating process of jet beam in the radio galaxy. The flowing features are given with theanalytic method, and the basic flow is along the direction of the jet beam. The mechanism ofacceleration from subsonic to supersonic flow is discussed. At the same time, some fine struc-tures about the double sources in the radio galaxy are explained.
Resumo:
In this paper an analysis of the kinetic theory of the continuous-wave flow chemical lasers(CWFCL) is presented with emphasis being laid on the effects of inhomogeneous broadeningon CWFCL's performance. The results obtained are applicable to the case where laser fre-quency is either coincident or incoincident with that of the eenter of the line shape. This rela-tion has been,compared with that of the rate model in common use. These two models are almostidentical as the broadening parameter η is larger than 1. The smaller the value of η, thegreater the difference between the results of these two models will be. For fixed η, the dif-ferences between fhe results of the two models increase with the increase of the frequencyshift parameter ξ. When η is about less than 0.2. the kinetic model can predict exactly the in-homogeneous broadening effects,while the rate model cannot.
Resumo:
The general equations of biomass and energy transfer for an n-species, closed ecosystem are written. It is demonstrated how in "ecological time" the parameters describing the dynamics of biomass transfer are related to the parameters of energy transfer, such as respiration, fixation, and energy content. This relationship is determinate for the straight-chain ecosystem, and a simple example is worked out. The results show how the density dependent terms in population dynamics arise naturally, and how the stable system exhibits a hierarchy in energy per unit biomass. A procedure is proposed for extending the theory to include webbed systems, and the particular difficulties involved in the extension are brought before the scientific community for discussion.
Resumo:
The environment temperature has inevitable effects on property of the convect ion-based tilt sensors. It not only redefines the application, but also prevents the improvement of the sensor performance. Numerical simulation of the fluid flow in the chamber of a sensor was performed and the influence of the environment temperature was studied in this paper. At zero tilt angle, the temperature distribution along the perpendicular line cross the heat source at various environment temperatures was presented. It was found that the flow varied dramatically at different environment temperatures, which would cause the output signal vary accordingly, even when the tilt angle was kept at a constant, because this device works by sensing the change of flow. At the same condition, we present the numerical results when the temperature difference across the heat source and the environment was kept at the same, in those results, it was found that the temperature difference at every point along the perpendicular line cross the heat source keep the same, this result confirms the similarity principle of nature convection. Second, A method of eliminating environment temperature infect on property of convect ion-based tilt sensor, which is based on the theory of flow similarity, is proposed. It was found that a thermal transistance can be piped on the circuit of heat source to compensate the temperature of the heat source. A compensative circuit was specially designed which can keep flow similarity by changing heat source temperature in order to eliminate the influence of environment temperature. The experiment results show that above 70% temperature drift can be eliminated by this compensative circuit.
Resumo:
Hydrophobic surface benefits for drag reduction. Min and Kim[1] do the first Direct Numerical Simulation on drag reduction in turbulent channel flow. And Fukagata and Kasagi[2] make some theoretical analysis based on Dean[3]'s formula and some observations in the DNS results. Using their theory, they conclude that drag reduction is possible in large Reynolds number. Both Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) are performed in our research. How the LES behaving in the turbulent channel flow with hydrophobic surface is examined. Original Smagorinsky model and its Dynamical model are used in LES. The slip velocities predicted by LES using Dynamical model are in good agreement with DNS as shown in the Figure. Although the percentage of drag reduction predicted by LES shows some discrepancies, it is in the error limit for industrial flow. First order and second order moments of LES are also examined and compared with DNS's results. The first-order moments is calculated well by LES. But there are some discrepancies of second-order moments between LES and DNS. [GRAPHICS]