918 resultados para ORGANIC MATERIAL
Resumo:
Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Crescimento e produtividade do girassol na segunda aplicação de lodo de esgoto em diferentes manejos
Resumo:
Sewage sludge, as a soil fertilizer for crop production, has become a very important agricultural input since it is rich in nutrients, adds carbon to the soil and improves its chemical, physical, and biological characteristics. The aim of this study was to evaluate the effects of sewage sludge applied as a fertilizer for two consecutive years on sunflower plant growth and productivity. The experiment was conducted at the Experimental Farm of the College of Agriculture, a unit of the São Paulo State University (UNESP), in São Manuel, state of São Paulo, Brazil. The soil where the experiment was set is a Red Oxissol. The experiment consisted of 6 treatments with 5 replications. The experimental units were distributed in the field according to a randomized complete block design. ‘HELIO 251’ was the sunflower cultivar used in the experiment. The treatments were as follows: T0: check (no nitrogen applied); T1: conventional chemical fertilization; T2: 50% of the N dose from sewage sludge and 50% from a chemical fertilizer in side dress application; T3: 100% of the N dose from sewage sludge; T4: 150% of the N dose from sewage sludge; T5: 200% of the N dose from sewage sludge. The 150% of the N dose from sewage sludge treatment caused the plants to increase in height, in stem diameter, and in number of leaves per plant. The mixture in equal proportion of sewage sludge and a chemical fertilizer (treatment T2) resulted in an achene yield higher than that of the chemical fertilizer alone (treatment T1).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The objective of this work is to study the relation between humidity, density, porosity and shrinkage of the floodplain soil and riparian vegetation and their ability to store water. For this purpose, two locations for every type of soils were evaluated. Both were placed at the Agronomy University (Faculdade de Ciências Agronômicas) in São Manuel, State of São Paulo, Brazil. The floodplain soil was vegetated with Southern Cattail (Typha domingensis). In both places, soil samples were collected from several depths: 0, 30, 60 and 100 cm. Results show that lower soil density values (0.15 g/cm3) with organic texture and high porosities values (up to 86.2%) were found in samples with the highest organic material content in the floodplain soil. For this field experiment, flood plains soils (characterised as basin gley soils) presented high volumetric instability with a retratibility of 67.49% and higher water storage capacities compared to riparian stands soils (characterised as fluvic neosoils).
Resumo:
Summer bloom-derived phytodetritus settles rapidly to the seafloor on the West Antarctic Peninsula (WAP) continental shelf, where it appears to degrade relatively slowly, forming a sediment ""food bank"" for benthic detritivores. We used stable carbon and nitrogen isotopes to examine sources and sinks of particulate organic material (POM) reaching the WAP shelf benthos (550-625 m depths), and to explore trophic linkages among the most abundant benthic megafauna. We measured delta(13)C and delta(15)N values in major megafaunal taxa (n = 26) and potential food sources, including suspended and sinking POM, ice algae, sediment organic carbon, phytodetritus, and macrofaunal polychaetes. The range in delta(13)C values (> 14 parts per thousand) of suspended POM was considerably broader than in sedimentary POC, where little temporal variability in stable isotope signatures was observed. While benthic megafauna also exhibited a broad range of VC values, organic carbon entering the benthic food web appeared to be derived primarily from phytoplankton production, with little input from ice algae. One group of organisms, primarily deposit-feeders, appeared to rely on fresh phytodetritus recovered from the sediments, and sediment organic material that had been reworked by sediment microbes. A second group of animals, including many mobile invertebrate and fish predators, appeared to utilize epibenthic or pelagic food resources such as zooplankton. One surface-deposit-feeding holothurian (Protelpidia murrayi) exhibited seasonal variability in stable isotope values of body tissue, while other surface- and subsurface-deposit-feeders showed no evidence of seasonal variability in food source or trophic position. Detritus from phytoplankton blooms appears to be the primary source of organic material for the detritivorous benthos; however, seasonal variability in the supply of this material is not mirrored in the sediments, and only to a minor degree in the benthic fauna. This pattern suggests substantial inertia in benthic-pelagic coupling, whereby the sediment ecosystem integrates long-term variability in production processes in the water column above. Published by Elsevier Ltd.
First Micromorphological Studies Of Brazilian Sambaquis, Jabuticabeira II Site, Santa Catarina State
Resumo:
First Micromorphological Studies of Brazilian Sambaquis, Jabuticabeira II Site, Santa Catarina State. In this note, preliminary results from the micromorphological study of the fish mound that covers the Jabuticabeira II sambaqui site, developed within the interdisciplinary research project Sambaquis e paisagem, are presented. Microstratigraphic analyses enabled the identification of anthropic pre-depositional processes that participated in the formation of this large structure, related to the burning and transport of mineral and organic material (terrigenous sand and charcoal) and inorganic residues of biological origin (bones, phytoliths, diatoms and siliceous aggregates). The effects of post-depositional alterations over these particles can be observed through dissolution traces in bone and the formation of a fine mineral material of phosphatic composition. The articulation of the evidence confirms the complex combination of activities and alteration processes involved in the formation of sambaqui sites, which transcends traditional functional dichotomies.
Resumo:
The performance of an anaerobic sequencing-batch biofilm reactor (ASBBR-laboratory scale- 14L) containing biomass immobilized on coal was evaluated for the removal of elevated concentrations of sulfate (between 200 and 3,000 mg SO4-2.L-1) from industrial wastewater effluents. The ASBBR was shown to be efficient for removal of organic material (between 90% and 45%) and sulfate (between 95% and 85%). The microbiota adhering to the support medium was analyzed by amplified ribosomal DNA restriction analysis (ARDRA). The ARDRA profiles for the Bacteria and Archaea domains proved to be sensitive for the determination of microbial diversity and were consistent with the physical-chemical monitoring analysis of the reactor. At 3,000 mg SO4-2.L-1, there was a reduction in the microbial diversity of both domains and also in the removal efficiencies of organic material and sulfate.
Resumo:
Palynostratigraphic and sedimentary fades analyses were made on sedimentary deposits from the left bank of the Solimoes River, southwest of Manaus. State of Amazonas, Brazil. These provided the age-elating and subdivision of a post-Cietaceous stratigraphic succession in the Amazonas Basin. The Novo Remanso Formation is subdivided into upper and lower units, and delineated by discontinuous surfaces at its top and bottom. The formation consists primarily of sandstones and minor mudstones and conglomerates, reflecting fluvial channel, point bar and floodplain facies of a fluvial meandering paleosystem. Fairly well-preserved palynoflora was recovered from four palynologically productive samples collected in a local irregular concentration of gray clay deposits, rich in organic material and fossilized wood, at the top of the Nova Remanso Formation upper unit. The palynoflora is dominated by terrestrial spores and pollen grains, an d is characterized by abundant angiosperm pollen grains (Tricolpites, Grimsdalea, Perisyncolporites, Tricolporites and Malvacearumpollis). Trilete spores are almost as abundant as the angiosperm pollen, and are represented mainly by the genera Deltoidospora. Verrutriletes, and Hamulatisporis. Gymnosperm pollen is scarce. The presence of the index species Grimsdalea magnaclavata Germeraad et al. (1968) indicates that these deposits belong to the Middle Miocene homonymous palynozone (Lorente, 1986; Hoorn, 1993; Jaramillo et al., 2011). Sedimentological characteristics (poorly sorted, angular to sub-angular, fine to very-coarse quartz sands facies) are typical of the NOW Remanso Formation upper part. These are associated with a paleoflow to the NE-E and SE-E, and with a a entirely lowland-derived palinofloristic content with no Andean ferns and gymnosperms representatives. All together, this suggests a cratonic origin for this Middle Miocene fluvial paleosystem, which was probably born in the Purus Arch eastern flank and areas surrounding the crystalline. The palynological analysis results presented herein are the first direct and unequivocal evidence of the occurrence of Middle Miocene deposits in the central part of the Amazonas Basin. They also provide new perspectives for intra- and interbasin correlations, as well as paleogeographic and paleoenvironmental interpretations for the later deposition stages in the northern Brazilian sedimentary basins. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work was to investigate the effect of different feeding times (2, 4 and 6 h) and applied volumetric organic loads (4.5, 6.0 and 7.5 gCOD L-1 day(-1)) on the performance of an anaerobic sequencing batch biofilm reactor (AnSBBR) treating effluent from biodiesel production. Polyurethane foam cubes were used as inert support in the reactor, and mixing was accomplished by recirculating the liquid phase. The effect of feeding time on reactor performance showed to be more pronounced at higher values of applied volumetric organic loads (AVOLs). Highest organic material removal efficiencies achieved at AVOL of 4.5 gCOD L-1 day(-1) were 87 % at 4-h feeding against 84 % at 2-h and 6-h feeding. At AVOL of 6.0 gCOD L-1 day(-1), highest organic material removal efficiencies achieved with 4-h and 6-h feeding were 84 %, against 71 % at 2-h feeding. At AVOL of 7.5 gCOD L-1 day(-1), organic material removal efficiency achieved with 4-h feeding was 77 %. Hence, longer feeding times favored minimization of total volatile acids concentration during the cycle as well as in the effluent, guaranteeing process stability and safety.
Resumo:
Hybrid materials were prepared by combining clay mineral (montmorillonite SWy-2 and saponite SapCa-1) and dyes extracted from the acai (Euterpe oleracea Mart.) fruit, which contains mainly anthocyanins from the 3-glucoside class, to increase the stability of the dye and facilitate its handling and storage. Clay minerals are common ingredients in therapeutic and pharmaceutical products and acai phytochemicals show disease prevention properties. The extract of the acai fruit was mixed with water suspensions of layered silicates in different proportions. The dyeclay hybrids presented incorporated organic material in amounts up to 24 wt.-%. X ray diffractometry and vibrational (FTIR and Raman) and electronic spectroscopic data showed that flavylium cations were successfully intercalated between the inorganic layers. Mass-coupled thermogravimetric analysis (TGA-MS) data showed a significant gain in the thermostability of the organic species in relation to anthocyanins in the extract. MS curves related to CO2 release (m/z = 44) are ascendant above 200 degrees C when the dye cations are confined to the inorganic structure. The radical scavenging activity of the hybrid materials was monitored by electron paramagnetic resonance (EPR) toward the stable radical DPPH (1,1-diphenyl-2-picrylhydrazyl) and compared to the activity of the acai extract. In addition to the fact that interaction with clay minerals improves the stability of the acai dyes against heat, their properties as radical scavengers are preserved after intercalation. The improvement in the properties of the nutraceutical species by intercalation by using biocompatible inorganic structures can be valuable for human therapy.
Resumo:
The performance of an anaerobic sequencing-batch biofilm reactor (ASBBR- laboratory scale- 14L )containing biomass immobilized on coal was evaluated for the removal of elevated concentrations of sulfate (between 200 and 3,000 mg SO4-2·L-1) from industrial wastewater effluents. The ASBBR was shown to be efficient for removal of organic material (between 90% and 45%) and sulfate (between 95% and 85%). The microbiota adhering to the support medium was analyzed by amplified ribosomal DNA restriction analysis (ARDRA). The ARDRA profiles for the Bacteria and Archaea domains proved to be sensitive for the determination of microbial diversity and were consistent with the physical-chemical monitoring analysis of the reactor. At 3,000 mg SO4-2·L-1, there was a reduction in the microbial diversity of both domains and also in the removal efficiencies of organic material and sulfate.
Resumo:
Histological and ultrastructural analyses of gills were observed in Nile tilapia collected from three different waterbodies in southeast Brazil: an urban lake in a park in the city of São Paulo, a reservoir in a rural city, and a commercial aquaculture facility. These aterbodies were analyzed and classified as hypereutrophic, eutrophic, and supereutrophic, respectively, with 310.00, 94.00, 28.00 of phosphate (PO2_ 4 lg L _1) and 65.49, 24.95, 12.83 of chlorophyll (lg L _1). A significant difference in the histological alterations index (HAI) was observed only in fish from the urban lake, with the presence of cell hypertrophy, hyperplasia, aneurism, and other alterations. When compared to the other groups, a large quantity of rodlet cells was also observed in the urban group. These results demonstrate the correlation of eutrophic states of water with gill morphology. Also discussed is the premise that large amounts of organic material dissolved in water can alter the morphology of the fish gills