920 resultados para Numerical Operator
Resumo:
The present paper studies the probability of ruin of an insurer, if excess of loss reinsurance with reinstatements is applied. In the setting of the classical Cramer-Lundberg risk model, piecewise deterministic Markov processes are used to describe the free surplus process in this more general situation. It is shown that the finite-time ruin probability is both the solution of a partial integro-differential equation and the fixed point of a contractive integral operator. We exploit the latter representation to develop and implement a recursive algorithm for numerical approximation of the ruin probability that involves high-dimensional integration. Furthermore we study the behavior of the finite-time ruin probability under various levels of initial surplus and security loadings and compare the efficiency of the numerical algorithm with the computational alternative of stochastic simulation of the risk process. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We consider stochastic partial differential equations with multiplicative noise. We derive an algorithm for the computer simulation of these equations. The algorithm is applied to study domain growth of a model with a conserved order parameter. The numerical results corroborate previous analytical predictions obtained by linear analysis.
Resumo:
Rock slope instabilities such as rock slides, rock avalanche or deep-seated gravitational slope deformations are widespread in Alpine valleys. These phenomena represent at the same time a main factor that control the mountain belts erosion and also a significant natural hazard that creates important losses to the mountain communities. However, the potential geometrical and dynamic connections linking outcrop and slope-scale instabilities are often unknown. A more detailed definition of the potential links will be essential to improve the comprehension of the destabilization processes and to dispose of a more complete hazard characterization of the rock instabilities at different spatial scales. In order to propose an integrated approach in the study of the rock slope instabilities, three main themes were analysed in this PhD thesis: (1) the inventory and the spatial distribution of rock slope deformations at regional scale and their influence on the landscape evolution, (2) the influence of brittle and ductile tectonic structures on rock slope instabilities development and (3) the characterization of hazard posed by potential rock slope instabilities through the development of conceptual instability models. To prose and integrated approach for the analyses of these topics, several techniques were adopted. In particular, high resolution digital elevation models revealed to be fundamental tools that were employed during the different stages of the rock slope instability assessment. A special attention was spent in the application of digital elevation model for detailed geometrical modelling of past and potential instabilities and for the rock slope monitoring at different spatial scales. Detailed field analyses and numerical models were performed to complete and verify the remote sensing approach. In the first part of this thesis, large slope instabilities in Rhone valley (Switzerland) were mapped in order to dispose of a first overview of tectonic and climatic factors influencing their distribution and their characteristics. Our analyses demonstrate the key influence of neotectonic activity and the glacial conditioning on the spatial distribution of the rock slope deformations. Besides, the volumes of rock instabilities identified along the main Rhone valley, were then used to propose the first estimate of the postglacial denudation and filling of the Rhone valley associated to large gravitational movements. In the second part of the thesis, detailed structural analyses of the Frank slide and the Sierre rock avalanche were performed to characterize the influence of brittle and ductile tectonic structures on the geometry and on the failure mechanism of large instabilities. Our observations indicated that the geometric characteristics and the variation of the rock mass quality associated to ductile tectonic structures, that are often ignored landslide study, represent important factors that can drastically influence the extension and the failure mechanism of rock slope instabilities. In the last part of the thesis, the failure mechanisms and the hazard associated to five potential instabilities were analysed in detail. These case studies clearly highlighted the importance to incorporate different analyses and monitoring techniques to dispose of reliable and hazard scenarios. This information associated to the development of a conceptual instability model represents the primary data for an integrated risk management of rock slope instabilities. - Les mouvements de versant tels que les chutes de blocs, les éboulements ou encore les phénomènes plus lents comme les déformations gravitaires profondes de versant représentent des manifestations courantes en régions montagneuses. Les mouvements de versant sont à la fois un des facteurs principaux contrôlant la destruction progressive des chaines orogéniques mais aussi un danger naturel concret qui peut provoquer des dommages importants. Pourtant, les phénomènes gravitaires sont rarement analysés dans leur globalité et les rapports géométriques et mécaniques qui lient les instabilités à l'échelle du versant aux instabilités locales restent encore mal définis. Une meilleure caractérisation de ces liens pourrait pourtant représenter un apport substantiel dans la compréhension des processus de déstabilisation des versants et améliorer la caractérisation des dangers gravitaires à toutes les échelles spatiales. Dans le but de proposer un approche plus globale à la problématique des mouvements gravitaires, ce travail de thèse propose trois axes de recherche principaux: (1) l'inventaire et l'analyse de la distribution spatiale des grandes instabilités rocheuses à l'échelle régionale, (2) l'analyse des structures tectoniques cassantes et ductiles en relation avec les mécanismes de rupture des grandes instabilités rocheuses et (3) la caractérisation des aléas rocheux par une approche multidisciplinaire visant à développer un modèle conceptuel de l'instabilité et une meilleure appréciation du danger . Pour analyser les différentes problématiques traitées dans cette thèse, différentes techniques ont été utilisées. En particulier, le modèle numérique de terrain s'est révélé être un outil indispensable pour la majorité des analyses effectuées, en partant de l'identification de l'instabilité jusqu'au suivi des mouvements. Les analyses de terrain et des modélisations numériques ont ensuite permis de compléter les informations issues du modèle numérique de terrain. Dans la première partie de cette thèse, les mouvements gravitaires rocheux dans la vallée du Rhône (Suisse) ont été cartographiés pour étudier leur répartition en fonction des variables géologiques et morphologiques régionales. En particulier, les analyses ont mis en évidence l'influence de l'activité néotectonique et des phases glaciaires sur la distribution des zones à forte densité d'instabilités rocheuses. Les volumes des instabilités rocheuses identifiées le long de la vallée principale ont été ensuite utilisés pour estimer le taux de dénudations postglaciaire et le remplissage de la vallée du Rhône lié aux grands mouvements gravitaires. Dans la deuxième partie, l'étude de l'agencement structural des avalanches rocheuses de Sierre (Suisse) et de Frank (Canada) a permis de mieux caractériser l'influence passive des structures tectoniques sur la géométrie des instabilités. En particulier, les structures issues d'une tectonique ductile, souvent ignorées dans l'étude des instabilités gravitaires, ont été identifiées comme des structures très importantes qui contrôlent les mécanismes de rupture des instabilités à différentes échelles. Dans la dernière partie de la thèse, cinq instabilités rocheuses différentes ont été étudiées par une approche multidisciplinaire visant à mieux caractériser l'aléa et à développer un modèle conceptuel trois dimensionnel de ces instabilités. A l'aide de ces analyses on a pu mettre en évidence la nécessité d'incorporer différentes techniques d'analyses et de surveillance pour une gestion plus objective du risque associée aux grandes instabilités rocheuses.
Resumo:
An accurate estimation of hydraulic fluxes in the vadose zone is essential for the prediction of water, nutrient and contaminant transport in natural systems. The objective of this study was to simulate the effect of variation of boundary conditions on the estimation of hydraulic properties (i.e. water content, effective unsaturated hydraulic conductivity and hydraulic flux) in a one-dimensional unsaturated flow model domain. Unsaturated one-dimensional vertical water flow was simulated in a pure phase clay loam profile and in clay loam interlayered with silt loam distributed according to the third iteration of the Cantor Bar fractal object Simulations were performed using the numerical model Hydrus 1D. The upper and lower pressure heads were varied around average values of -55 cm for the near-saturation range. This resulted in combinations for the upper and lower constant head boundary conditions, respectively, of -50 and -60 cm, -40 and -70 cm, -30 and -80 cm, -20 and -90 cm, and -10 and -100 cm. For the drier range the average head between the upper and lower boundary conditions was set to -550 cm, resulting in the combinations -500 and -600 cm, -400 and -700 cm, -300 and -800 cm, -200 and -900 cm, and -100 and -1,000 cm, for upper and lower boundary conditions, respectively. There was an increase in water contents, fluxes and hydraulic conductivities with the increase in head difference between boundary conditions. Variation in boundary conditions in the pure phase and interlayered one-dimensional profiles caused significant deviations in fluxes, water contents and hydraulic conductivities compared to the simplest case (a head difference between the upper and lower constant head boundaries of 10 cm in the wetter range and 100 cm in the drier range).
Resumo:
We consider systems described by nonlinear stochastic differential equations with multiplicative noise. We study the relaxation time of the steady-state correlation function as a function of noise parameters. We consider the white- and nonwhite-noise case for a prototype model for which numerical data are available. We discuss the validity of analytical approximation schemes. For the white-noise case we discuss the results of a projector-operator technique. This discussion allows us to give a generalization of the method to the non-white-noise case. Within this generalization, we account for the growth of the relaxation time as a function of the correlation time of the noise. This behavior is traced back to the existence of a non-Markovian term in the equation for the correlation function.
Resumo:
We study the singular effects of vanishingly small surface tension on the dynamics of finger competition in the Saffman-Taylor problem, using the asymptotic techniques described by Tanveer [Philos. Trans. R. Soc. London, Ser. A 343, 155 (1993)] and Siegel and Tanveer [Phys. Rev. Lett. 76, 419 (1996)], as well as direct numerical computation, following the numerical scheme of Hou, Lowengrub, and Shelley [J. Comput. Phys. 114, 312 (1994)]. We demonstrate the dramatic effects of small surface tension on the late time evolution of two-finger configurations with respect to exact (nonsingular) zero-surface-tension solutions. The effect is present even when the relevant zero-surface-tension solution has asymptotic behavior consistent with selection theory. Such singular effects, therefore, cannot be traced back to steady state selection theory, and imply a drastic global change in the structure of phase-space flow. They can be interpreted in the framework of a recently introduced dynamical solvability scenario according to which surface tension unfolds the structurally unstable flow, restoring the hyperbolicity of multifinger fixed points.
Resumo:
Intensive numerical studies of exact ground states of the two-dimensional ferromagnetic random field Ising model at T=0, with a Gaussian distribution of fields, are presented. Standard finite size scaling analysis of the data suggests the existence of a transition at ¿c=0.64±0.08. Results are compared with existing theories and with the study of metastable avalanches in the same model.
Resumo:
We study the problem of front propagation in the presence of inertia. We extend the analytical approach for the overdamped problem to this case, and present numerical results to support our theoretical predictions. Specifically, we conclude that the velocity and shape selection problem can still be described in terms of the metastable, nonlinear, and linear overdamped regimes. We study the characteristic relaxation dynamics of these three regimes, and the existence of degenerate (¿quenched¿) solutions.
Resumo:
Gel electrophoresis allows one to separate knotted DNA (nicked circular) of equal length according to the knot type. At low electric fields, complex knots, being more compact, drift faster than simpler knots. Recent experiments have shown that the drift velocity dependence on the knot type is inverted when changing from low to high electric fields. We present a computer simulation on a lattice of a closed, knotted, charged DNA chain drifting in an external electric field in a topologically restricted medium. Using a Monte Carlo algorithm, the dependence of the electrophoretic migration of the DNA molecules on the knot type and on the electric field intensity is investigated. The results are in qualitative and quantitative agreement with electrophoretic experiments done under conditions of low and high electric fields.
Resumo:
We present computational approaches as alternatives to a recent microwave cavity experiment by S. Sridhar and A. Kudrolli [Phys. Rev. Lett. 72, 2175 (1994)] on isospectral cavities built from triangles. A straightforward proof of isospectrality is given, based on the mode-matching method. Our results show that the experiment is accurate to 0.3% for the first 25 states. The level statistics resemble those of a Gaussian orthogonal ensemble when the integrable part of the spectrum is removed.
Resumo:
We present a phase-field model for the dynamics of the interface between two inmiscible fluids with arbitrary viscosity contrast in a rectangular Hele-Shaw cell. With asymptotic matching techniques we check the model to yield the right Hele-Shaw equations in the sharp-interface limit, and compute the corrections to these equations to first order in the interface thickness. We also compute the effect of such corrections on the linear dispersion relation of the planar interface. We discuss in detail the conditions on the interface thickness to control the accuracy and convergence of the phase-field model to the limiting Hele-Shaw dynamics. In particular, the convergence appears to be slower for high viscosity contrasts.
Resumo:
We present a numerical method for spectroscopic ellipsometry of thick transparent films. When an analytical expression for the dispersion of the refractive index (which contains several unknown coefficients) is assumed, the procedure is based on fitting the coefficients at a fixed thickness. Then the thickness is varied within a range (according to its approximate value). The final result given by our method is as follows: The sample thickness is considered to be the one that gives the best fitting. The refractive index is defined by the coefficients obtained for this thickness.