274 resultados para Numérotation de Fibonacci


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photonic modes of Thue-Morse and Fibonacci lattices with generating layers A and B, of positive and negative indices of refraction, are calculated by the transfer-matrix technique. For Thue-Morse lattices, as well for periodic lattices with AB unit cell, the constructive interference of reflected waves, corresponding to the zero(th)-order gap, takes place when the optical paths in single layers A and B are commensurate. In contrast, for Fibonacci lattices of high order, the same phenomenon occurs when the ratio of those optical paths is close to the golden ratio. In the long wavelength limit, analytical expressions defining the edge frequencies of the zero(th) order gap are obtained for both quasi-periodic lattices. Furthermore, analytical expressions that define the gap edges around the zero(th) order gap are shown to correspond to the = 0 and = 0 conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies of the band gap properties of one-dimensional superlattices with alternate layers of air and left-handed materials are carried out within the framework of Maxwell's equations. By left-handed material, we mean a material with dispersive negative electric and magnetic responses. Modeling them by Drude-type responses or by fabricated ones, we characterize the n(ω) = 0 gap, i.e., the zeroth order gap, which has been predicted and detected. The band structure and analytic equations for the band edges have been obtained in the long wavelength limit in case of periodic, Fibonacci, and Thue-Morse superlattices. Our studies reveal the nature of the width of the zeroth order band gap, whose edge equations are defined by null averages of the response functions. Oblique incidence is also investigated, yielding remarkable results. © 2010 Springer Science+Business Media B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Matemática em Rede Nacional - IBILCE

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Matemática em Rede Nacional - IBILCE

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Matemática em Rede Nacional - IBILCE

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report self-similar properties of periodic structures remarkably organized in the two-parameter space for a two-gene system, described by two-dimensional symmetric map. The map consists of difference equations derived from the chemical reactions for gene expression and regulation. We characterize the system by using Lyapunov exponents and isoperiodic diagrams identifying periodic windows, denominated Arnold tongues and shrimp-shaped structures. Period-adding sequences are observed for both periodic windows. We also identify Fibonacci-type series and Golden ratio for Arnold tongues, and period multiple-of-three windows for shrimps. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sistemi dinamici.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The extraordinary increase of new information technologies, the development of Internet, the electronic commerce, the e-government, mobile telephony and future cloud computing and storage, have provided great benefits in all areas of society. Besides these, there are new challenges for the protection of information, such as the loss of confidentiality and integrity of electronic documents. Cryptography plays a key role by providing the necessary tools to ensure the safety of these new media. It is imperative to intensify the research in this area, to meet the growing demand for new secure cryptographic techniques. The theory of chaotic nonlinear dynamical systems and the theory of cryptography give rise to the chaotic cryptography, which is the field of study of this thesis. The link between cryptography and chaotic systems is still subject of intense study. The combination of apparently stochastic behavior, the properties of sensitivity to initial conditions and parameters, ergodicity, mixing, and the fact that periodic points are dense, suggests that chaotic orbits resemble random sequences. This fact, and the ability to synchronize multiple chaotic systems, initially described by Pecora and Carroll, has generated an avalanche of research papers that relate cryptography and chaos. The chaotic cryptography addresses two fundamental design paradigms. In the first paradigm, chaotic cryptosystems are designed using continuous time, mainly based on chaotic synchronization techniques; they are implemented with analog circuits or by computer simulation. In the second paradigm, chaotic cryptosystems are constructed using discrete time and generally do not depend on chaos synchronization techniques. The contributions in this thesis involve three aspects about chaotic cryptography. The first one is a theoretical analysis of the geometric properties of some of the most employed chaotic attractors for the design of chaotic cryptosystems. The second one is the cryptanalysis of continuos chaotic cryptosystems and finally concludes with three new designs of cryptographically secure chaotic pseudorandom generators. The main accomplishments contained in this thesis are: v Development of a method for determining the parameters of some double scroll chaotic systems, including Lorenz system and Chua’s circuit. First, some geometrical characteristics of chaotic system have been used to reduce the search space of parameters. Next, a scheme based on the synchronization of chaotic systems was built. The geometric properties have been employed as matching criterion, to determine the values of the parameters with the desired accuracy. The method is not affected by a moderate amount of noise in the waveform. The proposed method has been applied to find security flaws in the continuous chaotic encryption systems. Based on previous results, the chaotic ciphers proposed by Wang and Bu and those proposed by Xu and Li are cryptanalyzed. We propose some solutions to improve the cryptosystems, although very limited because these systems are not suitable for use in cryptography. Development of a method for determining the parameters of the Lorenz system, when it is used in the design of two-channel cryptosystem. The method uses the geometric properties of the Lorenz system. The search space of parameters has been reduced. Next, the parameters have been accurately determined from the ciphertext. The method has been applied to cryptanalysis of an encryption scheme proposed by Jiang. In 2005, Gunay et al. proposed a chaotic encryption system based on a cellular neural network implementation of Chua’s circuit. This scheme has been cryptanalyzed. Some gaps in security design have been identified. Based on the theoretical results of digital chaotic systems and cryptanalysis of several chaotic ciphers recently proposed, a family of pseudorandom generators has been designed using finite precision. The design is based on the coupling of several piecewise linear chaotic maps. Based on the above results a new family of chaotic pseudorandom generators named Trident has been designed. These generators have been specially designed to meet the needs of real-time encryption of mobile technology. According to the above results, this thesis proposes another family of pseudorandom generators called Trifork. These generators are based on a combination of perturbed Lagged Fibonacci generators. This family of generators is cryptographically secure and suitable for use in real-time encryption. Detailed analysis shows that the proposed pseudorandom generator can provide fast encryption speed and a high level of security, at the same time. El extraordinario auge de las nuevas tecnologías de la información, el desarrollo de Internet, el comercio electrónico, la administración electrónica, la telefonía móvil y la futura computación y almacenamiento en la nube, han proporcionado grandes beneficios en todos los ámbitos de la sociedad. Junto a éstos, se presentan nuevos retos para la protección de la información, como la suplantación de personalidad y la pérdida de la confidencialidad e integridad de los documentos electrónicos. La criptografía juega un papel fundamental aportando las herramientas necesarias para garantizar la seguridad de estos nuevos medios, pero es imperativo intensificar la investigación en este ámbito para dar respuesta a la demanda creciente de nuevas técnicas criptográficas seguras. La teoría de los sistemas dinámicos no lineales junto a la criptografía dan lugar a la ((criptografía caótica)), que es el campo de estudio de esta tesis. El vínculo entre la criptografía y los sistemas caóticos continúa siendo objeto de un intenso estudio. La combinación del comportamiento aparentemente estocástico, las propiedades de sensibilidad a las condiciones iniciales y a los parámetros, la ergodicidad, la mezcla, y que los puntos periódicos sean densos asemejan las órbitas caóticas a secuencias aleatorias, lo que supone su potencial utilización en el enmascaramiento de mensajes. Este hecho, junto a la posibilidad de sincronizar varios sistemas caóticos descrita inicialmente en los trabajos de Pecora y Carroll, ha generado una avalancha de trabajos de investigación donde se plantean muchas ideas sobre la forma de realizar sistemas de comunicaciones seguros, relacionando así la criptografía y el caos. La criptografía caótica aborda dos paradigmas de diseño fundamentales. En el primero, los criptosistemas caóticos se diseñan utilizando circuitos analógicos, principalmente basados en las técnicas de sincronización caótica; en el segundo, los criptosistemas caóticos se construyen en circuitos discretos u ordenadores, y generalmente no dependen de las técnicas de sincronización del caos. Nuestra contribución en esta tesis implica tres aspectos sobre el cifrado caótico. En primer lugar, se realiza un análisis teórico de las propiedades geométricas de algunos de los sistemas caóticos más empleados en el diseño de criptosistemas caóticos vii continuos; en segundo lugar, se realiza el criptoanálisis de cifrados caóticos continuos basados en el análisis anterior; y, finalmente, se realizan tres nuevas propuestas de diseño de generadores de secuencias pseudoaleatorias criptográficamente seguros y rápidos. La primera parte de esta memoria realiza un análisis crítico acerca de la seguridad de los criptosistemas caóticos, llegando a la conclusión de que la gran mayoría de los algoritmos de cifrado caóticos continuos —ya sean realizados físicamente o programados numéricamente— tienen serios inconvenientes para proteger la confidencialidad de la información ya que son inseguros e ineficientes. Asimismo una gran parte de los criptosistemas caóticos discretos propuestos se consideran inseguros y otros no han sido atacados por lo que se considera necesario más trabajo de criptoanálisis. Esta parte concluye señalando las principales debilidades encontradas en los criptosistemas analizados y algunas recomendaciones para su mejora. En la segunda parte se diseña un método de criptoanálisis que permite la identificaci ón de los parámetros, que en general forman parte de la clave, de algoritmos de cifrado basados en sistemas caóticos de Lorenz y similares, que utilizan los esquemas de sincronización excitador-respuesta. Este método se basa en algunas características geométricas del atractor de Lorenz. El método diseñado se ha empleado para criptoanalizar eficientemente tres algoritmos de cifrado. Finalmente se realiza el criptoanálisis de otros dos esquemas de cifrado propuestos recientemente. La tercera parte de la tesis abarca el diseño de generadores de secuencias pseudoaleatorias criptográficamente seguras, basadas en aplicaciones caóticas, realizando las pruebas estadísticas, que corroboran las propiedades de aleatoriedad. Estos generadores pueden ser utilizados en el desarrollo de sistemas de cifrado en flujo y para cubrir las necesidades del cifrado en tiempo real. Una cuestión importante en el diseño de sistemas de cifrado discreto caótico es la degradación dinámica debida a la precisión finita; sin embargo, la mayoría de los diseñadores de sistemas de cifrado discreto caótico no ha considerado seriamente este aspecto. En esta tesis se hace hincapié en la importancia de esta cuestión y se contribuye a su esclarecimiento con algunas consideraciones iniciales. Ya que las cuestiones teóricas sobre la dinámica de la degradación de los sistemas caóticos digitales no ha sido totalmente resuelta, en este trabajo utilizamos algunas soluciones prácticas para evitar esta dificultad teórica. Entre las técnicas posibles, se proponen y evalúan varias soluciones, como operaciones de rotación de bits y desplazamiento de bits, que combinadas con la variación dinámica de parámetros y con la perturbación cruzada, proporcionan un excelente remedio al problema de la degradación dinámica. Además de los problemas de seguridad sobre la degradación dinámica, muchos criptosistemas se rompen debido a su diseño descuidado, no a causa de los defectos esenciales de los sistemas caóticos digitales. Este hecho se ha tomado en cuenta en esta tesis y se ha logrado el diseño de generadores pseudoaleatorios caóticos criptogr áficamente seguros.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To demonstrate that crystallographic methods can be applied to index and interpret diffraction patterns from well-ordered quasicrystals that display non-crystallographic 5-fold symmetry, we have characterized the properties of a series of periodic two-dimensional lattices built from pentagons, called Fibonacci pentilings, which resemble aperiodic Penrose tilings. The computed diffraction patterns from periodic pentilings with moderate size unit cells show decagonal symmetry and are virtually indistinguishable from that of the infinite aperiodic pentiling. We identify the vertices and centers of the pentagons forming the pentiling with the positions of transition metal atoms projected on the plane perpendicular to the decagonal axis of quasicrystals whose structure is related to crystalline η phase alloys. The characteristic length scale of the pentiling lattices, evident from the Patterson (autocorrelation) function, is ∼τ2 times the pentagon edge length, where τ is the golden ratio. Within this distance there are a finite number of local atomic motifs whose structure can be crystallographically refined against the experimentally measured diffraction data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider exciton optical absorption in quasiperiodic lattices, focusing our attention on the Fibonacci case as a typical example. The absorption spectrum is evaluated by solving numerically the equation of motion of the Frenkel-exciton problem on the lattice, in which on-site energies take on two values according to the Fibonacci sequence. We find that the quasiperiodic order causes the occurrence of well-defined characteristic features in the absorption spectra. We also develop an analytical method that relates satellite lines with the Fourier pattern of the lattice. Our predictions can be used to determine experimentally the long-range quasiperiodic order from optical measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We numerically investigate the effects of inhomogeneities in the energy spectrum of aperiodic semiconductor superlattices, focusing our attention on Thue-Morse and Fibonacci sequences. In the absence of disorder, the corresponding electronic spectra are self-similar. The presence of a certain degree of randomness, due to imperfections occurring during the growth processes, gives rise to a progressive loss of quantum coherence, smearing out the finer details of the energy spectra predicted for perfect aperiodic superlattices and spurring the onset of electron localization. However, depending on the degree of disorder introduced, a critical size for the system exists, below which peculiar transport properties, related to the pre-fractal nature of the energy spectrum, may be measured.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz