915 resultados para Nonlinear integral equations.
Resumo:
In the present paper, based on the theory of dynamic boundary integral equation, an optimization method for crack identification is set up in the Laplace frequency space, where the direct problem is solved by the author's new type boundary integral equations and a method for choosing the high sensitive frequency region is proposed. The results show that the method proposed is successful in using the information of boundary elastic wave and overcoming the ill-posed difficulties on solution, and helpful to improve the identification precision.
Resumo:
The problems of dislocation nucleation and emission from a crack tip are analysed based on Peierls model. The concept adopted here is essentially the same as that proposed by Rice. A slight modification is introduced here to identify the pure linear elastic response of material. A set of new governing equations is developed, which is different from that used by Beltz and Rice. The stress field and the dislocation density field can be expressed as the first and second Chebyshev polynomial series respectively. Then the opening and slip displacements can be expanded as the trigonometric series. The Newton-Raphson Method is used to solve a set of nonlinear algebraic equations. The new governing equations allow us to extend the analyses to the case of dislocation emission. The calculation results for pure shearing, pure tension and combined tension and shear loading are given in detail.
Resumo:
A detailed analysis of kinking of an interface crack between two dissimilar anisotropic elastic solids is presented in this paper. The branched crack is considered as a distributed dislocation. A set of the singular integral equations for the distribution function of the dislocation density is developed. Explicit formulas of the stress intensity factors and the energy release rates for the branched crack are given for orthotropic bimaterials and misoriented orthotropic bicrystals. The role of the stress parallel to the interface, sigma0 is taken into account in these formulas. The interface crack can advance either by continued extension along the interface or by kinking out of the interface into one of the adjoining materials. This competition depends on the ratio of the energy release rates for interface cracking and for kinking out of the interface and the ratio of interface toughness to substrate toughness. Throughout the paper, the influences of the inplane stress sigma0 on the stress intensity factors and the energy release rates for the branched crack, which can significantly alter the conditions for interface cracking, are emphasized.
Resumo:
The statistical-mechanics theory of the passive scalar field convected by turbulence, developed in an earlier paper [Phys. Fluids 28, 1299 (1985)], is extended to the case of a small molecular Prandtl number. The set of governing integral equations is solved by the equation-error method. The resultant scalar-variance spectrum for the inertial range is F(k)~x−5/3/[1+1.21x1.67(1+0.353x2.32)], where x is the wavenumber scaled by Corrsin's dissipation wavenumber. This result reduces to the − (5)/(3) law in the inertial-convective range. It also approximately reduces to the − (17)/(3) law in the inertial-diffusive range, but the proportionality constant differs from Batchelor's by a factor of 3.6.
Resumo:
Classical statistical mechanics is applied to the study of a passive scalar field convected by isotropic turbulence. A complete set of independent real parameters and dynamic equations are worked out to describe the dynamic state of the passive scalar field. The corresponding Liouville equation is solved by a perturbation method based upon a Langevin–Fokker–Planck model. The closure problem is treated by a variational approach reported in earlier papers. Two integral equations are obtained for two unknown functions: the scalar variance spectrum F(k) and the effective damping coefficient (k). The appearance of the energy spectrum of the velocity field in the two integral equations represents the coupling of the scalar field with the velocity field. As an application of the theory, the two integral equations are solved to derive the inertial-convective-range spectrum, obtaining F(k)=0.61 −1/3 k−5/3. Here is the dissipation rate of the scalar variance and is the dissipation rate of the energy of the velocity field. This theoretical value of the scalar Kolmogorov constant, 0.61, is in good agreement with experiments.
Resumo:
The method of statistical mechanics is applied to the study of the one-dimensional model of turbulence proposed in an earlier paper. The closure problem is solved by the variational approach which has been developed for the three-dimensional case, yielding two integral equations for two unknown functions. By solving the two integral equations, the Kolmogorov k−5/3 law is derived and the (one-dimensional) Kolmogorov constant Ko is evaluated, obtaining Ko=0.55, which is in good agreement with the result of numerical experiments on one-dimensional turbulence.
Resumo:
The vorticity dynamics of two-dimensional turbulence are investigated analytically, applying the method of Qian (1983). The vorticity equation and its Fourier transform are presented; a set of modal parameters and a modal dynamic equation are derived; and the corresponding Liouville equation for the probability distribution in phase space is solved using a Langevin/Fokker-Planck approach to obtain integral equations for the enstrophy and for the dynamic damping coefficient eta. The equilibrium spectrum for inviscid flow is found to be a stationary solution of the enstrophy equation, and the inertial-range spectrum is determined by introducing a localization factor in the two integral equations and evaluating the localized versions numerically.
Resumo:
In this paper, we first present a system of differential-integral equations for the largedisturbance to the general case that any arbitrarily shaped solid body with a cavity contain-ing viscous liquid rotates uniformly around the principal axis of inertia, and then develop aweakly non-linear stability theory by the Lyapunov direct approach. Applying this theoryto the Columbus problem, we have proved the consistency between the theory and Kelvin'sexperiments.
Resumo:
This paper simulates a one-dimensional physical model of natural gas production from hydrate dissociation in a reservoir by depressurization. According to the principles of solid hydrate decomposition in stratum and flow of natural gas in porous medium, the pressure governing equations for both gas zone and hydrate zone are set up based on the physical production model. Using the approximation reported by N. N. Verigin et al. (1980), the nonlinear governing equations are simplified and the self-similar solutions are obtained. Through calculation, for different reservoir parameters, the distribution characters of pressure are analyzed. The decline trend of natural gas production rate with time is also studied. The simulation results show that production of natural gas from a hydrate reservoir is very sensitive to several reservoir parameters, such as wellbore pressure and stratum porosity and permeability.
Resumo:
Lipid bilayer membranes are models for cell membranes--the structure that helps regulate cell function. Cell membranes are heterogeneous, and the coupling between composition and shape gives rise to complex behaviors that are important to regulation. This thesis seeks to systematically build and analyze complete models to understand the behavior of multi-component membranes.
We propose a model and use it to derive the equilibrium and stability conditions for a general class of closed multi-component biological membranes. Our analysis shows that the critical modes of these membranes have high frequencies, unlike single-component vesicles, and their stability depends on system size, unlike in systems undergoing spinodal decomposition in flat space. An important implication is that small perturbations may nucleate localized but very large deformations. We compare these results with experimental observations.
We also study open membranes to gain insight into long tubular membranes that arise for example in nerve cells. We derive a complete system of equations for open membranes by using the principle of virtual work. Our linear stability analysis predicts that the tubular membranes tend to have coiling shapes if the tension is small, cylindrical shapes if the tension is moderate, and beading shapes if the tension is large. This is consistent with experimental observations reported in the literature in nerve fibers. Further, we provide numerical solutions to the fully nonlinear equilibrium equations in some problems, and show that the observed mode shapes are consistent with those suggested by linear stability. Our work also proves that beadings of nerve fibers can appear purely as a mechanical response of the membrane.
Resumo:
Based on the rigorous formulation of integral equations for the propagations of light waves at the medium interface, we carry out the numerical solutions of the random light field scattered from self-affine fractal surface samples. The light intensities produced by the same surface samples are also calculated in Kirchhoff's approximation, and their comparisons with the corresponding rigorous results show directly the degree of the accuracy of the approximation. It is indicated that Kirchhoff's approximation is of good accuracy for random surfaces with small roughness value w and large roughness exponent alpha. For random surfaces with larger w and smaller alpha, the approximation results in considerable errors, and detailed calculations show that the inaccuracy comes from the simplification that the transmitted light field is proportional to the incident field and from the neglect of light field derivative at the interface.
Resumo:
The superspace approach provides a manifestly supersymmetric formulation of supersymmetric theories. For N= 1 supersymmetry one can use either constrained or unconstrained superfields for such a formulation. Only the unconstrained formulation is suitable for quantum calculations. Until now, all interacting N>1 theories have been written using constrained superfields. No solutions of the nonlinear constraint equations were known.
In this work, we first review the superspace approach and its relation to conventional component methods. The difference between constrained and unconstrained formulations is explained, and the origin of the nonlinear constraints in supersymmetric gauge theories is discussed. It is then shown that these nonlinear constraint equations can be solved by transforming them into linear equations. The method is shown to work for N=1 Yang-Mills theory in four dimensions.
N=2 Yang-Mills theory is formulated in constrained form in six-dimensional superspace, which can be dimensionally reduced to four-dimensional N=2 extended superspace. We construct a superfield calculus for six-dimensional superspace, and show that known matter multiplets can be described very simply. Our method for solving constraints is then applied to the constrained N=2 Yang-Mills theory, and we obtain an explicit solution in terms of an unconstrained superfield. The solution of the constraints can easily be expanded in powers of the unconstrained superfield, and a similar expansion of the action is also given. A background-field expansion is provided for any gauge theory in which the constraints can be solved by our methods. Some implications of this for superspace gauge theories are briefly discussed.
Resumo:
Part I: The dynamic response of an elastic half space to an explosion in a buried spherical cavity is investigated by two methods. The first is implicit, and the final expressions for the displacements at the free surface are given as a series of spherical wave functions whose coefficients are solutions of an infinite set of linear equations. The second method is based on Schwarz's technique to solve boundary value problems, and leads to an iterative solution, starting with the known expression for the point source in a half space as first term. The iterative series is transformed into a system of two integral equations, and into an equivalent set of linear equations. In this way, a dual interpretation of the physical phenomena is achieved. The systems are treated numerically and the Rayleigh wave part of the displacements is given in the frequency domain. Several comparisons with simpler cases are analyzed to show the effect of the cavity radius-depth ratio on the spectra of the displacements.
Part II: A high speed, large capacity, hypocenter location program has been written for an IBM 7094 computer. Important modifications to the standard method of least squares have been incorporated in it. Among them are a new way to obtain the depth of shocks from the normal equations, and the computation of variable travel times for the local shocks in order to account automatically for crustal variations. The multiregional travel times, largely based upon the investigations of the United States Geological Survey, are confronted with actual traverses to test their validity.
It is shown that several crustal phases provide control enough to obtain good solutions in depth for nuclear explosions, though not all the recording stations are in the region where crustal corrections are considered. The use of the European travel times, to locate the French nuclear explosion of May 1962 in the Sahara, proved to be more adequate than previous work.
A simpler program, with manual crustal corrections, is used to process the Kern County series of aftershocks, and a clearer picture of tectonic mechanism of the White Wolf fault is obtained.
Shocks in the California region are processed automatically and statistical frequency-depth and energy depth curves are discussed in relation to the tectonics of the area.
Resumo:
This thesis presents a novel class of algorithms for the solution of scattering and eigenvalue problems on general two-dimensional domains under a variety of boundary conditions, including non-smooth domains and certain "Zaremba" boundary conditions - for which Dirichlet and Neumann conditions are specified on various portions of the domain boundary. The theoretical basis of the methods for the Zaremba problems on smooth domains concern detailed information, which is put forth for the first time in this thesis, about the singularity structure of solutions of the Laplace operator under boundary conditions of Zaremba type. The new methods, which are based on use of Green functions and integral equations, incorporate a number of algorithmic innovations, including a fast and robust eigenvalue-search algorithm, use of the Fourier Continuation method for regularization of all smooth-domain Zaremba singularities, and newly derived quadrature rules which give rise to high-order convergence even around singular points for the Zaremba problem. The resulting algorithms enjoy high-order convergence, and they can tackle a variety of elliptic problems under general boundary conditions, including, for example, eigenvalue problems, scattering problems, and, in particular, eigenfunction expansion for time-domain problems in non-separable physical domains with mixed boundary conditions.
Resumo:
Sufficient conditions are derived for the validity of approximate periodic solutions of a class of second order ordinary nonlinear differential equations. An approximate solution is defined to be valid if an exact solution exists in a neighborhood of the approximation.
Two classes of validity criteria are developed. Existence is obtained using the contraction mapping principle in one case, and the Schauder-Leray fixed point theorem in the other. Both classes of validity criteria make use of symmetry properties of periodic functions, and both classes yield an upper bound on a norm of the difference between the approximate and exact solution. This bound is used in a procedure which establishes sufficient stability conditions for the approximated solution.
Application to a system with piecewise linear restoring force (bilinear system) reveals that the approximate solution obtained by the method of averaging is valid away from regions where the response exhibits vertical tangents. A narrow instability region is obtained near one-half the natural frequency of the equivalent linear system. Sufficient conditions for the validity of resonant solutions are also derived, and two term harmonic balance approximate solutions which exhibit ultraharmonic and subharmonic resonances are studied.