931 resultados para Non-therapeutic ventilation
Resumo:
Inflammatory destruction of insulin-producing β cells in the pancreatic islets is the hallmark of insulin-dependent diabetes mellitus, a spontaneous autoimmune disease of non-obese diabetic mice resembling human juvenile (type I) diabetes. Histochemical analysis of diabetic pancreata revealed that mononuclear cells infiltrating the islets and causing autoimmune insulitis, as well as local islet cells, express the CD44 receptor; hyaluronic acid, the principal ligand of CD44, is detected in the islet periphery and islet endothelium. Injection of anti-CD44 mAb 1 hr before cell transfer of diabetogenic splenocytes and subsequently on alternate days for 4 weeks induced considerable resistance to diabetes in recipient mice, reflected by reduced insulitis. Contact sensitivity to oxazolone was not influenced by this treatment. A similar antidiabetic effect was observed even when the anti-CD44 mAb administration was initiated at the time of disease onset: i.e., 4–7 weeks after cell transfer. Administration of the enzyme hyaluronidase also induced appreciable resistance to insulin-dependent diabetes mellitus, suggesting that the CD44–hyaluronic acid interaction is involved in the development of the disease. These findings demonstrate that CD44-positive inflammatory cells may be a potential therapeutic target in insulin-dependent diabetes.
Resumo:
The urokinase plasminogen activator system is involved in angiogenesis and tumor growth of malignant gliomas, which are highly neovascularized and so may be amenable to antiangiogenic therapy. In this paper, we describe the activity of Å6, an octamer capped peptide derived from the non-receptor-binding region of urokinase plasminogen activator. Å6 inhibited human microvascular endothelial cell migration but had no effect on the proliferation of human microvascular endothelial cells or U87MG glioma cells in vitro. In contrast, Å6 or cisplatin (CDDP) alone suppressed subcutaneous tumor growth in vivo by 48% and 53%, respectively, and, more strikingly, the combination of Å6 plus CDDP inhibited tumor growth by 92%. Such combination treatment also greatly reduced the volume of intracranial tumor xenografts and increased survival of tumor-bearing animals when compared with CDDP or Å6 alone. Tumors from the combination treatment group had significantly reduced neovascularization, suggesting a mechanism involving Å6-mediated inhibition of endothelial cell motility, thereby eliciting vascular sensitivity to CDDP-mediated toxicity. These data suggest that the combination of an angiogenesis inhibitor that targets endothelial cells with a cytotoxic agent may be a useful therapeutic approach.
Resumo:
The mechanisms of neuronal degeneration following traumatic head injury are not well understood and no adequate treatment is currently available for the prevention of traumatic brain damage in humans. Traumatic head injury leads to primary (at impact) and secondary (distant) damage to the brain. Mechanical percussion of the rat cortex mimics primary damage seen after traumatic head injury in humans; no animal model mimicking the secondary damage following traumatic head injury has yet been established. Rats subjected to percussion trauma of the cortex showed primary damage in the cortex and secondary damage in the hippocampus. Morphometric analysis demonstrated that both cortical and hippocampal damage was mitigated by pretreatment with either the N-methyl-D-aspartate (NMDA) antagonist 3-((+/-)- 2-carboxypiperazin-4-yl)-propyl-1-phosphonate (CPP) or the non-NMDA antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline (NBQX). Neither treatment prevented primary damage in the cortex when therapy was started after trauma. Surprisingly, delayed treatment of rats with NBQX, but not with CPP, beginning between 1 and 7 hr after trauma prevented hippocampal damage. No protection was seen when therapy with NBQX was started 10 hr after trauma. These data indicate that both NMDA- and non-NMDA-dependent mechanisms contribute to the development of primary damage in the cortex, whereas non-NMDA mechanisms are involved in the evolution of secondary damage in the hippocampus in rats subjected to traumatic head injury. The wide therapeutic time-window documented for NBQX suggests that antagonism at non-NMDA receptors may offer a novel therapeutic approach for preventing deterioration of the brain after head injury.
Leading With the Relationship: The Role of the Therapeutic Relationship in Motivational Interviewing
Resumo:
Motivational Interviewing (MI) is a brief evidence-based treatment that is most commonly used to treat addictive behaviors and to encourage diet and lifestyle changes and treatment adherence in health care settings. In recent years MI's use has been expanded to multiple other client populations in clinical psychology, as well as to other sectors, such as in education, and international non-profit work (Hettema at al., 2005). MI was inspired by research that demonstrated a high correlation between therapist application of the client-centered skill of accurate empathy and a reduction in drinking behaviors (Miller et al., 1980). MI contains both relational and technical components that are intended to operate synergistically. Despite a large body of research on MI treatment outcomes, variation in effectiveness has been found among studies, and the active ingredients of MI, particularly the relational aspects, are not well understood. As a result, the use of MI in many treatment settings is limited to the technical components of MI without a theory-based integration of the therapeutic relationship. This paper focuses on the contribution of the relational component to the effectiveness of MI, and explores the synergistic relationship between the technical and relational components of MI. A literature review of MI and the trans-theoretical literature on the therapeutic relationship is followed by two case illustrations. The paper concludes with recommendations for the field.
Resumo:
Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz
Resumo:
A vast amount of data shows that angiogenesis has a pivotal role in tumor growth, progression, invasiveness and metastasis. This is a complex process involving essential signaling pathways such as vascular endothelial growth factor (VEGF) and Notch in vasculature, as well as additional players such as bone marrow-derived endothelial progenitor cells. Primary tumor cells, stromal cells and cancer stem cells strongly influence vessel growth in tumors. Better understanding of the role of the different pathways and the crosstalk between different cells during tumor angiogenesis are crucial factors for developing more effective anticancer therapies. Targeting angiogenic factors from the VEGF family has become an effective strategy to inhibit tumor growth and so far the most successful results are seen in metastatic colorectal cancer (CRC), renal cell carcinoma (RCC) and non-small cell lung cancer (NSCLL). Despite the initial enthusiasm, the angiogenesis inhibitors showed only moderate survival benefit as monotherapy, along with a high cost and many side effects. Obviously, other important pathways may affect the angiogenic switch, among them Notch signaling pathway attracted a large interest because its ubiquitous role in carcinogenesis and angiogenesis. Herein we present the basics for VEGF and Notch signaling pathways and current advances of targeting them in antiangiogenic, antitumor therapy.
Resumo:
Inactivity is associated with endothelial dysfunction and the development of cardiovascular disease. Exercise training has a favourable effect in the management of hypertension, heart failure and ischaemic heart disease. These beneficial effects are probably mediated through improvements of vascular function and, in this issue of Clinical Science, Hagg and co-authors propose a coronary artery effect. The use of a Doppler technique for non-invasive assessment of coronary flow reserve in a small animal model is an exciting aspect of this study. If feasible in the hands of other investigators, the availability of sequential coronary flow measurements in animal models may help improve our understanding of the mechanisms of disorders of the coronary circulation.
Resumo:
Patients with non-erosive reflux disease (NERD) report symptoms which commonly fail to improve on conventional antireflux therapies. Oesophageal visceral hyperalgaesia may contribute to symptom generation in NERD and we explore this hypothesis using oesophageal evoked potentials. Fifteen endoscopically confirmed NERD patients (four female, 29–56 years) plus 15 matched healthy volunteers (four female, 23–56 years) were studied. All patients had oesophageal manometry/24-h pH monitoring and all subjects underwent evoked potential and sensory testing, using electrical stimulation of the distal oesophagus. Cumulatively, NERD patients had higher sensory thresholds and increased evoked potential latencies when compared to controls (P = 0.01). In NERD patients, there was a correlation between pain threshold and acid exposure as determined by DeMeester score (r = 0.63, P = 0.02), with increased oesophageal sensitivity being associated with lower DeMeester score. Reflux negative patients had lower pain thresholds when compared to both reflux positive patients and controls. Evoked potentials were normal in reflux negative patients but significantly delayed in the reflux positive group (P = 0.01). We demonstrate that NERD patients form a continuum of oesophageal afferent sensitivity with a correlation between the degree of acid exposure and oesophageal pain thresholds. We provide objective evidence that increased oesophageal pain sensitivity in reflux negative NERD is associated with heightened afferent sensitivity as normal latency evoked potential responses could be elicited with reduced afferent input. Increased oesophageal afferent pain sensitivity may play an important role in a subset of NERD and could offer an alternate therapeutic target.
Resumo:
Impaired insulin action (insulin resistance) is a key factor in the pathogenesis of diabetes mellitus. To investigate therapeutic targets against insulin resistance, this thesis explores the mechanism of action of pharmacological agents and exogenous peptides known or suspected to modify insulin action. These included leptin, a hormone primarily involved in the regulation of body weight; sibutramine, an antiobesity agent; plant-derived compounds (pinitol and chamaemeloside) and agents known to affect insulin sensitivity, e.g. metformin, tolbutamide, thiazolidinediones, vanadyl sulphate and thioctic acid. Models used for investigation included the L6 skeletal muscle cell line and isolated skeletal muscles. In vivo studies were undertaken to investigate glycaemia, insulinaemia, satiety and body weight in streptozotocin-induced diabetic mice and obese (ob/ob) mice. Leptin acutely altered insulin action in skeletal muscle cells via the short form of the leptin receptor. This direct action of leptin was mediated via a pathway involving PI 3-kinase but not Jak2. The active metabolites of sibutramine had antidiabetic properties in vivo and directly improved insulin sensitivity in vitro. This effect appeared to be conducted via a non-PI 3-kinase-mediated increase in protein synthesis with facilitated glucose transport, and was independent of the serotonin and noradrenaline reuptake inhibition produced by sibutramine. Pinitol (a methyl inositol) had an insulin mimetic effect and was an effective glucose-lowering agent in insulinopenic states, acting directly on skeletal muscle. Conversely chamaemeloside appeared to improve glucose tolerance without directly altering glucose transport. Metformin directly increased basal glucose uptake independently of PI 3-kinase, possibly via an increase in the intrinsic activity of glucose transporters. Neither tolbutamide nor thiazolidinediones directly altered insulin sensitivity in L6 skeletal muscle cells: however vanadyl sulphate and thioctic acid increased glucose transport but appeared to exert toxic effects at therapeutic concentrations. Examination of glucose transport in skeletal muscle in this thesis has identified various components of post-receptor insulin signalling pathways which may be targeted to ameliorate insulin resistance. Type 2 Diabetes Mellitus Obesity L6 Skeletal Muscle Cells Glucose Transport Insulin Signalling 2
Resumo:
Alginate is widely used as a viscosity enhancer in many different pharmaceutical formulations. The aim of this thesis is to quantitatively describe the functions of this polyelectrolyte in pharmaceutical systems. To do this the techniques used were Viscometry, Light Scattering, Continuous and Oscillatory Shear Rheometry, Numerical Analysis and Diffusion. Molecular characterization of the Alginate was carried out using Viscometry and Light Scattering to determine the molecular weight, the radius of gyration, the second virial coefficient and the Kuhn statistical segment length. The results showed good agreement with similar parameters obtained in previous studies. By blending Alginate with other polyelectrolytes, Xanthan Gum and 'Carbopol', in various proportions and with various methods of low and high shear preparation, a very wide range of dynamic rheological properties was found. Using oscillatory testing, the parameters often varied over several decades of magnitude. It was shown that the determination of the viscous and elastic components is particularly useful in describing the rheological 'profiles' of suspending agent blends and provides a step towards the non-empirical formulation of pharmaceutical disperse systems. Using numerical analysis of equations describing planar diffusion, it was shown that the analysis of drug release profiles alone does not provide unambiguous information about the mechanism of rate control. These principles were applied to the diffusion of Ibuprofen in Calcium Alginate gels. For diffusion in such non-Newtonian systems, emphasis was placed on the use of the elastic as well as the viscous component of viscoelasticity. It was found that the diffusion coefficients were relatively unaffected by increases in polymer concentration up to 5 per cent, yet the elasticities measured by oscillatory shear rheometry were increased. This was interpreted in the light of several theories of diffusion in gels.
Resumo:
The rodent ventrobasal (VB) thalamus contains a relatively uniform population of thalamocortical (TC) neurons that receive glutamatergic input from the vibrissae and the somatosensory cortex, and inhibitory input from the nucleus reticularis thalami (nRT). In this study we describe ?-aminobutyric acid (GABA)(A) receptor-dependent slow outward currents (SOCs) in TC neurons that are distinct from fast inhibitory postsynaptic currents (IPSCs) and tonic currents. SOCs occurred spontaneously or could be evoked by hypo-osmotic stimulus, and were not blocked by tetrodotoxin, removal of extracellular Ca(2+) or bafilomycin A1, indicating a non-synaptic, non-vesicular GABA origin. SOCs were more common in TC neurons of the VB compared with the dorsal lateral geniculate nucleus, and were rarely observed in nRT neurons, whilst SOC frequency in the VB increased with age. Application of THIP, a selective agonist at d-subunit-containing GABA(A) receptors, occluded SOCs, whereas the benzodiazepine site inverse agonist ß-CCB had no effect, but did inhibit spontaneous and evoked IPSCs. In addition, the occurrence of SOCs was reduced in mice lacking the d-subunit, and their kinetics were also altered. The anti-epileptic drug vigabatrin increased SOC frequency in a time-dependent manner, but this effect was not due to reversal of GABA transporters. Together, these data indicate that SOCs in TC neurons arise from astrocytic GABA release, and are mediated by d-subunit-containing GABA(A) receptors. Furthermore, these findings suggest that the therapeutic action of vigabatrin may occur through the augmentation of this astrocyte-neuron interaction, and highlight the importance of glial cells in CNS (patho) physiology.
Resumo:
Diabetic retinopathy (DR) remains the leading cause of blindness among working-age individuals in developed countries. Current treatments for DR are indicated in advanced stages of the disease and are associated with significant adverse effects. Therefore, new pharmacological treatments for the early stages of DR are needed. DR has been classically considered to be a microcirculatory disease of the retina. However, there is growing evidence to suggest that retinal neurodegeneration is an early event in the pathogenesis of DR, which participates in the microcirculatory abnormalities that occur in DR. Therefore, the study of the underlying mechanisms that lead to neurodegeneration will be essential for identifying new therapeutic targets. From the clinical point of view, the identification of those patients in whom retinal neurodegeneration appears will be crucial for implementing early treatment based on neuroprotective drugs. When the early stages of DR are the therapeutic target, it would be inconceivable to recommend an aggressive treatment such as intravitreous injections. By contrast, topical administration of neuroprotective drugs by using eye drops is a possible option. However, clinical trials to determine the safety and effectiveness of this non-invasive route, as well as a standardisation of the methods for monitoring neurodegeneration, are needed.
Resumo:
The effects of the alpha-diketone derivatives 2,3- and 3,4-hexanediones were investigated in three non-neuronal cell lines (MCF7, HepG2 and CaCo-2) as well as in the neuroblastoma line, SH-SY5Y. The MTT reduction assay was employed to determine the necrotic effects of the alpha-diketones and the neurotoxin 2,5-hexanedione over 4, 24 and 48 hr exposures. Flow cytometry was also used to study the effects of the three isomers on the cell cycle of the SH-SY5Y line only. With 2,5-hexanedione, the mean MTT IC50 decreased more than 10-fold from 4 to 48 hr. The toxicities of both alpha-diketones were similar, with a more than 18-fold increase in sensitivity of the SH-SY5Y at 24 hr compared to that of 4 hr. With flow cytometry at 48 hr, SH-SY5Y apoptosis with 2,5-hexanedione rose throughout the concentration range evaluated (0-30 mM) while 2,3- and 3,4-hexanediones showed apoptosis over the concentration range 1-1.6 mM, with 3,4-hexanedione being the more potent compared to the 2,3-isomer. At 1.6 mM nearly all the cells had entered apoptosis in the presence of the 3,4-isomer, (94.9 ± 1.4%) but only 57.5 ±4.1% of the 2,3-isomer-treated cells had reached that stage. The 2,3-and 3,4-isomers in diets alone may not pose a serious threat to human health. Further studies may be necessary to evaluate the effects of other dietary components on their toxicity. These alpha-diketones also display a degree of toxic selectivity towards neuroblastoma cells, which may have therapeutic implications.
Resumo:
It is estimated that 69-75 million people worldwide will suffer a traumatic brain injury (TBI) or stroke each year. Brain oedema caused by TBI or following a stroke, together with other disorders of the brain cost Europe €770 billion in 2014. Aquaporins (AQP) are transmembrane water channels involved in many physiologies and are responsible for the maintenance of water homeostasis. They react rapidly to changes in osmolarity by transporting water through their highly selective central pore to maintain tonicity and aid in cell volume regulation. We have previously shown that recombinant AQP1-GFP trafficking occurs in a proteinkinase C-microtubule dependant manner in HEK-293 cells in response to hypotonicity. This trafficking mechanism is also reliant on the presence of calcium and its messenger-binding protein calmodulin and results in increased cell surface expression of AQP1 in a time-scale of ~30 seconds. There is currently very little research into the trafficking mechanisms of endogenous AQPs in primary cells. AQP4 is the most abundantly expressed AQP within the brain, it is localised to the astrocytic end-feet, in contact with the blood vessels at the blood-brain-barrier. In situations where the exquisitely-tuned osmotic balance is disturbed, high water permeability can become detrimental. AQP4-mediated water influx causes rapid brain swelling, resulting in death or long term brain damage. Previous research has shown that AQP4 knock-out mice were protected from the formation of cytotoxic brain oedema in a stroke model, highlighting AQP4 as a key drug target for this pathology. As there are currently no treatments available to restrict the flow of water through AQP4 as all known inhibitors are either cytotoxic or non-specific, controlling the mechanisms involved in the regulation of AQP4 in the brain could provide a therapeutic solution to such diseases. Using cell surface biontinylation of endogenous AQP4 in primary rat astrocytes followed by neutraavidin based ELISA we have shown that AQP4 cell surface localisation increases by 2.7 fold after 5 minutes hypotonic treatment at around 85 mOsm/kg H2O. We have also shown that this rapid relocalisation of AQP4 is regulated by PKA, calmodulin, extra-cellular calcium and actin. In summary we have shown that rapid translocation of endogenous AQP4 occurs in primary rat astrocytes in response to hypotonic stimuli; this mechanism is PKA, calcium, actin and calmodulin dependant. AQP4 has the potential to provide a treatment for the development of brain oedema.
Resumo:
The U.S. Department of Energy (DOE) needs a design basis to properly design a PJM and ventilation systems for the Waste Treatment Plant vessels. In order to meet DOE's needs for proper ventilation and PJM design technologies, Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) has studied the properties for gas holdup in selected non Newtonian fluids with physicochemical properties comparable to nuclear waste. The primary purpose of this research was to study the holdup properties of selected non - Newtonian simulants and quantify the level of gas holdup in selected simulants using continuous argon injection in five gallons vessel. Gas holdup tests involved the injection of gas bubbles in simulant waste in scaled prototypic vessels. The holdup was measured as a function of injection rate in the vessel. Tests were performed with both Laponite, Clay 12%, Clay 27% and Qard 13.5. This work showed that the percentage of holdup was about 3% for all simulants despite the significant differences in rheology.