964 resultados para Non-homogeneous boundary conditions
Resumo:
Approximate solutions for the non-linear bending of thin rectangular plates are presented considering large deflections for various boundary conditions. In the case of stress-free edges, solutions are given for von Kármán's equations in terms of the stress function and the deflection of the plate. In the case of immovable edges, equations are constructed in terms of the three displacements and these are solved. The solution is given by using double series consisting of the appropriate Beam Functions which satisfy the boundary conditions. The differential equations are satisfied by using the orthogonality properties of the series. Numerical results for square plates with uniform lateral load indicate good convergence of the series solution presented here.
Resumo:
We propose an effective elastography technique in which an acoustic radiation force is used for remote palpation to generate localized tissue displacements, which are directly correlated to localized variations of tissue stiffness and are measured using a light probe in the same direction of ultrasound propagation. The experimental geometry has provision to input light beam along the ultrasound propagation direction, and hence it can be prealigned to ensure proper interception of the focal region by the light beam. Tissue-mimicking phantoms with homogeneous and isotropic mechanical properties of normal and malignant breast tissue are considered for the study. Each phantom is insonified by a focusing ultrasound transducer (1 MHz). The focal volume of the transducer and the ultrasound radiation force in the region are estimated through solving acoustic wave propagation through medium assuming average acoustic properties. The forward elastography problem is solved for the region of insonification assuming the Lame's parameters and Poisson's ratio, under Dirichlet boundary conditions which gives a distribution of displacement vectors. The direction of displacement, though presented spatial variation, is predominantly towards the ultrasound propagation direction. Using Monte Carlo (MC) simulation we have traced the photons through the phantom and collected the photons arriving at the detector on the boundary of the object in the direction of ultrasound. The intensity correlations are then computed from detected photons. The intensity correlation function computed through MC simulation showed a modulation whose strength is found to be proportional to the amplitude of displacement and inversely related to the storage (elastic) modulus. It is observed that when the storage modulus in the focal region is increased the computed displacement magnitude, as indicated by the depth of modulation in the intensity autocorrelation, decreased and the trend is approximately exponential.
Resumo:
The problem of a circular elastic inclusion in a cylindrical shell subjected to internal pressure or thermal loading is studied. The two shallow-shell equations governing the behaviour of a cylindrical shell are transformed into a single differential equation involving a curvature parameter and a complex potential function in a non-dimensional form. In the shell region, the solution is represented by Hankel functions of first kind, whereas in the inclusion region it is represented by Bessel functions of first kind. Boundary conditions at the shell-inclusion junction are expressed in a simple form involving in-plane strains and change in curvature. The effect of such inclusion parameters as extensional rigidity, bending rigidity, and thermal expansion coefficients on the stress concentrations has been determined. The results are presented in non-dimensional form for ready use.
Resumo:
Short-time analytical solutions of solid and liquid temperatures and freezing front have been obtained for the outward radially symmetric spherical solidification of a superheated melt. Although results are presented here only for time dependent boundary flux, the method of solution can be used for other kinds of boundary conditions also. Later, the analytical solution has been compared with the numerical solution obtained with the help of a finite difference numerical scheme in which the grid points change with the freezing front position. An efficient method of execution of the numerical scheme has been discussed in details. Graphs have been drawn for the total solidification times and temperature distributions in the solid.
Resumo:
First, the non-linear response of a gyrostabilized platform to a small constant input torque is analyzed in respect to the effect of the time delay (inherent or deliberately introduced) in the correction torque supplied by the servomotor, which itself may be non-linear to a certain extent. The equation of motion of the platform system is a third order nonlinear non-homogeneous differential equation. An approximate analytical method of solution of this equation is utilized. The value of the delay at which the platform response becomes unstable has been calculated by using this approximate analytical method. The procedure is illustrated by means of a numerical example. Second, the non-linear response of the platform to a random input has been obtained. The effects of several types of non-linearity on reducing the level of the mean square response have been investigated, by applying the technique of equivalent linearization and solving the resulting integral equations by using laguerre or Gaussian integration techniques. The mean square responses to white noise and band limited white noise, for various values of the non-linear parameter and for different types of non-linearity function, have been obtained. For positive values of the non-linear parameter the levels of the non-linear mean square responses to both white noise and band-limited white noise are low as compared to the linear mean square response. For negative values of the non-linear parameter the level of the non-linear mean square response at first increases slowly with increasing values of the non-linear parameter and then suddenly jumps to a high level, at a certain value of the non-linearity parameter.
Resumo:
Numerical simulations of the magnetorotational instability (MRI) with zero initial net flux in a non-stratified isothermal cubic domain are used to demonstrate the importance of magnetic boundary conditions. In fully periodic systems the level of turbulence generated by the MRI strongly decreases as the magnetic Prandtl number (Pm), which is the ratio of kinematic viscosity and magnetic diffusion, is decreased. No MRI or dynamo action below Pm=1 is found, agreeing with earlier investigations. Using vertical field conditions, which allow magnetic helicity fluxes out of the system, the MRI is found to be excited in the range 0.1
Resumo:
The paper describes an experimental and analytical study of the normal and scratch hardnesses of a model soft rigid-plastic solid. The material known as ‘Plasticine’, a mixture of dry particles and a mineral oil, has been deformed with a range of rigid conical indentors with included angles of between 30° and 170°. The sliding velocity dependence of the computed scratch hardness and friction has been examined in the velocity range 0.19 mm/s to 7.3 m/s. Data are also described for the time dependence of the normal hardness and also the estimated rate dependence of the intrinsic flow stress. The latter values were estimated from data obtained during the upsetting of right cylinders. Three major conclusions are drawn from these data and the associated analysis. (1) A first-order account of the scratching force may be provided by adopting a model which sums the computed plastic deformation and interfacial sliding contributions to the total sliding work. This is tantamount to the adoption of the two-term non-interacting model of friction. (2) For this system during sliding, at high sliding velocities at least, the interface shear stress which defines the boundary condition is not directly related to the bulk shear stress. The interface rheological characteristics indicate an appreciable dependence on the imposed strain or strain rate. In particular, the relative contributions of the slip and stick boundary conditions appear to be a function of the imposed sliding velocity. (3) The computed normal and scratch hardness values are not simply interrelated primarily because of the evolving boundary conditions which appear to exist in the scratching experiments.
Resumo:
Nonconservatively loaded columns. which have stochastically distributed material property values and stochastic loadings in space are considered. Young's modulus and mass density are treated to constitute random fields. The support stiffness coefficient and tip follower load are considered to be random variables. The fluctuations of external and distributed loadings are considered to constitute a random field. The variational formulation is adopted to get the differential equation and boundary conditions. The non self-adjoint operators are used at the boundary of the regularity domain. The statistics of vibration frequencies and modes are obtained using the standard perturbation method, by treating the fluctuations to be stochastic perturbations. Linear dependence of vibration and stability parameters over property value fluctuations and loading fluctuations are assumed. Bounds for the statistics of vibration frequencies are obtained. The critical load is first evaluated for the averaged problem and the corresponding eigenvalue statistics are sought. Then, the frequency equation is employed to transform the eigenvalue statistics to critical load statistics. Specialization of the general procedure to Beck, Leipholz and Pfluger columns is carried out. For Pfluger column, nonlinear transformations are avoided by directly expressing the critical load statistics in terms of input variable statistics.
Resumo:
The Leipholz column which is having the Young modulus and mass per unit length as stochastic processes and also the distributed tangential follower load behaving stochastically is considered. The non self-adjoint differential equation and boundary conditions are considered to have random field coefficients. The standard perturbation method is employed. The non self-adjoint operators are used within the regularity domain. Full covariance structure of the free vibration eigenvalues and critical loads is derived in terms of second order properties of input random fields characterizing the system parameter fluctuations. The mean value of critical load is calculated using the averaged problem and the corresponding eigenvalue statistics are sought. Through the frequency equation a transformation is done to yield load parameter statistics. A numerical study incorporating commonly observed correlation models is reported which illustrates the full potentials of the derived expressions.
Resumo:
Vibration and buckling of curved plates, made of hybrid laminated composite materials, are studied using first-order shear deformation theory and Reissner's shallow shell theory. For an initial study, only simply-supported boundary conditions are considered. The natural frequencies and critical buckling loads are calculated using the energy method (Lagrangian approach) by assuming a combination of sine and cosine functions in the form of double Fourier series. The effects of curvature, aspect ratio, stacking sequence and ply-orientation are studied. The non-dimensional frequencies and critical buckling load of a hybrid laminate lie in between the values for laminates made of all plies of higher strength and lower strength fibres. Curvature enhances natural frequencies and it is more predominant for a thin panel than a thick one.
Resumo:
Lamination-dependent shear corrective terms in the analysis of bending of laminated plates are derived from a priori assumed linear thicknesswise distributions for gradients of transverse shear stresses by using CLPT inplane stresses in the two in-plane equilibrium equations of elasticity in each ply. In the development of a general model for angle-ply laminated plates, special cases like cylindrical bending of laminates in either direction, symmetric laminates, cross-ply laminates, antisymmetric angle-ply laminates, homogeneous plates are taken into consideration. Adding these corrective terms to the assumed displacements in (i) Classical Laminate Plate Theory (CLPT) and (ii) Classical Laminate Shear Deformation Theory (CLSDT), two new refined lamination-dependent shear deformation models are developed. Closed form solutions from these models are obtained for antisymmetric angle-ply laminates under sinusoidal load for a type of simply supported boundary conditions. Results obtained from the present models and also from Ren's model (1987) are compared with each other.
Resumo:
The potential predictability of the Indian summer monsoon due to slowly varying sea surface temperature (SST) forcing is examined. Factors responsible for limiting the predictability are also investigated. Three multiyear simulations with the R30 version of the Geophysical Fluid Dynamics Laboratory's climate model are carried out for this purpose, The mean monsoon simulated by this model is realistic including the mean summer precipitation over the Indian continent. The interannual variability of the large-scale component of the monsoon such as the "monsoon shear index" and its teleconnection with Pacific SST is well simulated by the model in a 15-yr integration with observed SST as boundary condition. On regional scales, the skill in simulating the interannual variability of precipitation over the Indian continent by the model is rather modest and its simultaneous correlation with eastern Pacific SST is negative but poor as observed. The poor predictability of precipitation over the Indian region in the model is related to the fact that contribution to the interannual variability over this region due to slow SST variations [El Nino-Southern Oscillation (ENSO) related] is comparable to those due to regional-scale fluctuations unrelated to ENSO SST. The physical mechanism through which ENSO SST tend to produce reduction in precipitation over the Indian continent is also elucidated. A measure of internal variability of the model summer monsoon is obtained from a 20-yr integration of the same model with fixed annual cycle SST as boundary conditions but with predicted soil moisture and snow cover. A comparison of summer monsoon indexes between this run and the observed SST run shows that the internal oscillations can account for a large fraction of the simulated monsoon variability. The regional-scale oscillations in the observed SST run seems to arise from these internal oscillations. It is discovered that most of the interannual internal variability is due to an internal quasi-biennial oscillation (QBO) of the model atmosphere. Such a QBO is also found in the author's third 18-yr simulation in which fixed annual cycle of SST as well as soil moisture and snow cover are prescribed. This shows that the model QBO is not due to land-surface-atmosphere interaction. It is proposed that the model QBO arises due to an interaction between nonlinear intraseasonal oscillations and the annual cycle. Spatial structure of the QBO and its role in limiting the predictability of the Indian summer monsoon is discussed.
Resumo:
The tendency of granular materials in rapid shear flow to form non-uniform structures is well documented in the literature. Through a linear stability analysis of the solution of continuum equations for rapid shear flow of a uniform granular material, performed by Savage (1992) and others subsequently, it has been shown that an infinite plane shearing motion may be unstable in the Lyapunov sense, provided the mean volume fraction of particles is above a critical value. This instability leads to the formation of alternating layers of high and low particle concentrations oriented parallel to the plane of shear. Computer simulations, on the other hand, reveal that non-uniform structures are possible even when the mean volume fraction of particles is small. In the present study, we have examined the structure of fully developed layered solutions, by making use of numerical continuation techniques and bifurcation theory. It is shown that the continuum equations do predict the existence of layered solutions of high amplitude even when the uniform state is linearly stable. An analysis of the effect of bounding walls on the bifurcation structure reveals that the nature of the wall boundary conditions plays a pivotal role in selecting that branch of non-uniform solutions which emerges as the primary branch. This demonstrates unequivocally that the results on the stability of bounded shear how of granular materials presented previously by Wang et al. (1996) are, in general, based on erroneous base states.
Resumo:
Two mixed boundary value problems associated with two-dimensional Laplace equation, arising in the study of scattering of surface waves in deep water (or interface waves in two superposed fluids) in the linearised set up, by discontinuities in the surface (or interface) boundary conditions, are handled for solution by the aid of the Weiner-Hopf technique applied to a slightly more general differential equation to be solved under general boundary conditions and passing on to the limit in a manner so as to finally give rise to the solutions of the original problems. The first problem involves one discontinuity while the second problem involves two discontinuities. The reflection coefficient is obtained in closed form for the first problem and approximately for the second. The behaviour of the reflection coefficient for both the problems involving deep water against the incident wave number is depicted in a number of figures. It is observed that while the reflection coefficient for the first problem steadily increases with the wave number, that for the second problem exhibits oscillatory behaviour and vanishes at some discrete values of the wave number. Thus, there exist incident wave numbers for which total transmission takes place for the second problem. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
A systematic procedure is outlined for scaling analysis of momentum and heat transfer in gas tungsten arc weld pools. With suitable selections of non-dimentionalised parameters, the governing equations coupled with appropriate boundary conditions are first scaled, and the relative significance of various terms appearing in them is analysed accordingly. The analysis is then used to predict the orders of magnitude of some important quantities, such as the velocity scene lit the top surface, velocity boundary layer thickness, maximum temperature increase in the pool, and time required for initiation of melting. Some of the quantities predicted from the scaling analysis can also be used for optimised selection of appropriate grid size and time steps for full numerical simulation of the process. The scaling predictions are finally assessed by comparison with numerical results quoted in the literature, and a good qualitative agreement is observed.