988 resultados para Nickel alloys.
Resumo:
The hot deformation behaviour of polycrystalline nickel has been characterised in the temperature range 750-1200-degrees-C and strain rate range 0.0003-100 s-1 using processing maps developed in the basis of the dynamic materials model. The efficiency of power dissipation, given by [2m/(m + 1)]. where m is the strain rate sensitivity, is plotted as a function of temperature and strain rate to obtain a processing map. A domain of dynamic recrystallisation has been identified, with a peak efficiency of 31% occurring at 925-degrees-C and 1 s-1. The published results are in agreement with the prediction of the processing map. The variations of efficiency of power dissipation with temperature and strain rate in the dynamic recrystallisation domain are identical to the corresponding variation of hot ductility. The stress-strain curves exhibited a single peak in a single peak in the dynamic recrystallisation domain, whereas multiple peaks and 'drooping' stress-strain curves were observed at lower and higher strain rates, respectively. The results are explained on the basis of a simple model which considers dynamic recrystallisation in terms of rates of interface formation (nucleation) and migration (growth). It is shown that dynamic recrystallisation in nickel is controlled by the rate of nucleation, which is slower than the rate of migration. The rate of nucleation itself depends on the process of thermal recovery by climb, which in turn depends on self-diffusion.
Resumo:
An electroless method of nickel hydroxide synthesis through the complexation-precipitation route which yields a fine particle material having a specific surface area of 178 m2 g–1 has been described. The morphology of this material as revealed by electron microscopy is distinctly different from the turbostratic nature of electrosynthesized nickel hydroxide. While the long range structure as shown by the X-ray diffraction pattern is similar to that of beta-Ni(OH)2, the short range structure as revealed by infrared spectroscopy incorporates characteristics similar to that of agr-Ni(OH)2. Cyclic voltammetry studies show that the electroless nickel hydroxide has a higher coulombic efficiency (>90%), a more anodic reversible potential and a higher degree of reversibility compared to the electrosynthesized nickel hydroxide and conventionally prepared nickel hydroxide.
Resumo:
AI83Y10Ni7, AI80Y10Ni10 and AI80Y10Cu10 alloys were studied by the rapid solidification processing route. The glass-forming ability was found to decrease in the order of alloys mentioned above. Differential scanning calorimetry (DSC) of these amorphous alloys showed that the amorphous phase in AI-Y-Ni alloys has a higher thermal stability when compared to that in AI-Y-Cu alloys. A four-stage crystallization sequence could be identified for the AI-Y-Ni amorphous alloys. Even though the AI80Y10Cu10 alloy showed four exothermic peaks in the DSC study, a definite crystallization sequence could not be arrived at due to the coexistence of many crystalline phases along with the amorphous phase in the melt-spun condition.
Resumo:
Interaction of varying coverages of Ni metal with solid films of C60 and C70 has been investigated by UV and X-ray photemission spectroscopy. The shifts in the valence bands of C60 (as well as of C70) with increasing Ni coverage accompanied by a shift of the C is level of the fullerene to lower binding energies suggest charge-transfer from the metal to the fullerene as in transition metal complexes of π-systems.
Resumo:
The authors have measured longitudinal and transverse magnetoresistance (MR) of crystalline pseudo-binary alloys FexNi80-xCr20 (50
Resumo:
Organic molecules such as glucose or lactose mediate the synthesis and stabilize alpha-nickel hydroxide in a simple precipitation reaction, while, in the absence of these additives, beta-nickel hydroxide is formed. The additives are not incorporated in the product phase.
Measurement for Thermal Effusivity of AlxGa1-xN Alloys Using Thermoreflectance with Periodic Heating
Resumo:
AlxGa1-xN alloys with x=0.375, 0.398, 0.401, 0.592 and 0.696 were deposited on sapphire substrate by the hydride-vapor-phase epitaxy (HVPE) method. Thermal effusivity measurements were carried out on AlxGa1-xN alloys using a thermal microscope at room temperature. The lag between sinusoidal heating laser wave and thermoreflectance wave was used to measure the thermal diffusivity. Thermal conductivity values of the AlxGa1-xN alloys were also obtained as a function of AIN mole fraction in the alloy. The thermal conductivity was found to decrease with increasing AIN fraction and the experimental data agree with values estimated using the virtual crystal model.
Resumo:
The impedance of sealed nickel/cadmium cells around a cell e.m.f. of 0.0 V was measured at five different temperatures between � 10 and +30 °C. The results show that the behaviour is similar at all temperatures. Based on the experimental results, the relation between charge-transfer resistance (Rct) and temperature (T) has been established for the Volmer reaction. Further, the value of cathodic transfer coefficient (?) has been estimated.
Texture evolution and operative mechanisms during large-strain deformation of nanocrystalline nickel
Resumo:
The large-strain deformation of nanocrystalline nickel was investigated at room temperature and cryogenic (liquid N-2) temperature. Deformation mechanisms ranging from grain boundary sliding to slip, operate due to a wide distribution of grain sizes. These mechanisms leave their finger print in the deformation texture evolution during rolling of nanocrystalline nickel. The occurrence and severance of different mechanisms is understood by a thorough characterization of the deformed samples using X-ray diffraction, X-ray texture measurements, electron back-scattered diffraction and transmission electron microscopy. Crystal plasticity-based viscoplastic self-consistent simulations were used to further substantiate the experimental observations. Thus, a comprehensive understanding of deformation behavior of nanocrystalline nickel, which is characterized by simultaneous operation of dislocation-dominated and grain boundary-mediated mechanisms, has been developed.