996 resultados para Nd:YVO4


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fe-57 Mossbauer spectra for the series of R3Fe29-xCrx (R = Y,Ce, Nd, Sm, Gd, Tb, and Dy) compounds and their hydrides have been measured at 4.2 K. The weighted average hyperfine field at the Fe sites was separated into a 3d-electron contribution, proportional to the average Fe moment, and a transferred contribution due to rare earth moments. The latter was found to increase with the rare earth effective spin (g(J) - 1) J. Hyperfine fields in the hydrides were only slightly larger than in the corresponding alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mossbauer spectra for Fe atoms in the series of R3Fe29-xVx (R = Y, Ce, Nd, Sm, Gd, Tb, and Dy) compounds were collected at 4.2 K. The ratio of 14.5 T/mu(B) between the average hyperfine field B-hf and the average Fe magnetic moment mu(Fe)(MS), obtained from our data, in Y3Fe29-xVx is in agreement with that deduced from the RxTy alloys by Gubbens et al. The average Fe magnetic moments mu(Fe)(MS) in these compounds at 4.2 K, deduced from our Mossbauer spectroscopic studies, are in accord with the results of magnetization measurement. The average hyperfine field of the Fe sites for R3Fe29-xVx at 4.2 K increases with increasing values of the rare earth effective spin (g(J) - 1) J, which indicates that there exists a transferred spin polarization induced by the neighboring rare earth atom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fe-57 Mossbauer spectra for the Fe atoms in the R3Fe29-xTx (R=Y, Ce, Nd, Sm, Gd, Tb, Dy; T=V, Cr) compounds were collected at 4.2 K. The analysis of Mossbauer spectra was based on the results of magnetization and neutron powder diffraction measurements. The average Fe magnetic moments at 4.2 K, deduced from our data, are in accord with magnetization measurements. The average hyperfine field of Tb3Fe29-xCrx (x=1.0, 1.5, 2.0, and 3.0) decreases with increasing Cr concentration, which is also in accordance with the variation of the average Fe magnetic moment in the Tb3Fe29-xCrx compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystallographic and intrinsic magnetic properties of hydride R3Fe29-xTxHy (R=Y, Ce, Nd, Sm, Gd, Tb, and Dy; T=V and Cr) have been investigated. The lattice constants and the unit cell volume of R3Fe29-xTxHy decrease with increasing R atomic number from Nd to Dy, except for Ce, reflecting the lanthanide contraction. Regular anisotropic expansions, mainly along the a- and b-axis rather than along the c-axis, are observed for all the compounds upon hydrogenation. Hydrogenation leads to an increase in Curie temperature. First-order magnetization processes (FOMP) occur in magnetic fields of around 1.5 T and 4.0 T at 4.2 K for Nd3Fe24.5Cr4.5H5.0 and Tb(3)Fc(27.0)Cr(2.0)H(2.8), and around 1.4 T at room temperature for Gd3Fe28.0Cr1.0H4.2 Abnormal crystallographic and magnetic properties of Ce3Fe29-xTxHy suggest that the Ce ion is non-triply ionized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic study of the phase formation, structure and magnetic properties of the R3Fe29-xTx compounds (R=Y, Ce, Nd, Sm, Gd, Tb, and Dy; T=V and Cr) has been performed upon hydrogenation. The lattice constants and the unit cell volume of R3Fe29-xTxHy decrease with increasing R atomic number from Nd to Dy, except for Ce, reflecting the lanthanide contraction. Regular anisotropic expansions mainly along the a- and b-axis rather than along the c-axis are observed for all of the compounds upon hydrogenation. Hydrogenation leads to an increase in the Curie temperature and a corresponding increase in the saturation magnetization at room temperature for each compound. First order magnetization processes (FOMP) occur in the external magnetic fields for Nd3Fe24.5Cr4.5H5.0, Tb3Fe27.0Cr2.0H2.8, and Gd3Fe28.0Cr1.0H4.2 compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic investigation of crystallographic and intrinsic magnetic properties of the hydrides R3Fe29 - xVxHy (R = Y, Ce, Nd, Sm, Gd, Tb, and Dy) has been performed in this work. The lattice constants a, b, and c and the unit cell volume of R3Fe29 - xVxHy decrease with increasing rare-earth atomic number from Nd to Dy, except for Ce, reflecting the lanthanide contraction. Hydrogenation results in regular anisotropic expansions along the a-, b-, and c-axes in this series of hydrides. Abnormal crystallographic and magnetic properties of Ce3Fe27.5V1.5H6.5, like Ce3Fe27.5V1.5, suggest that the Ce ion is non-triply ionized. Hydrogenation leads to the increase in both Curie temperature for all the compounds and in the saturation magnetization at 4.2 K and RT for R3Fe29 - xVx with R = Y, Ce, Nd, Sm, Gd, and Dy, except for Tb. Hydrogenation also leads to a decrease in the anisotropy field at 4.2 K and RT for R3Fe29 - xVx with R = Y, Ce, Nd, Gd, Tb, and Dy, except for Sm. The Ce3Fe27.5V1.5 and Gd3Fe28.4V0.6 show the larger storage of hydrogen with y = 6.5 and 6.9 in these hydrides. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic study of the structural and intrinsic magnetic properties of the hydrides R3Fe29-xCrxHy (R = Y, Ce, Nd, Sm, Gd, Tb, and Dy) has been performed. Hydrogenation lends to a relative volume expansion of the unit cell and a decrease in x-ray density for each compound. Anisotropic expansions mainly along the n- and b-axes rather than along the c-axis for all of the compounds upon hydrogenation are observed. The lattice constants and the unit-cell volume of R3Fe29-xCrx and R3Fe29-xCrxHy decrease with increasing R atomic number from Nd to Dy, except for Ce, reflecting the lanthanide contraction. Hydrogenation results in an increase in the Curie temperature and a corresponding increase in the saturation magnetization at room temperature for each compound. After hydrogenation a decrease of 0.34 mu(B)/Fe in the average Fe atomic magnetic moment and a slight increase in the anisotropy field for Y3Fe27.2Cr1.8 are achieved at 4.2 K. First-order magnetization processes (FOMP) occur in magnetic fields of around 1.5 T and 4.0 T at 4.2 K for Nd3Fe24.5Cr4.5H5.0 and TD3Fe27.0Cr2.0H2.8, and around 1.4 T at room temperature for Gd3Fe28.0Cr1.0H4.2. The abnormal crystallographic and magnetic properties of Ce3Fe25.0Cr4.0 and Ce3Fe25.0Cr4.0H5.4 suggest that the Ce ion non-triply ionized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic investigation of crystallographic and magnetic properties of nitride R3Fe29-xCrxN4 (R=Y, Ce, Nd, Sm, Gd, Tb, and Dy) has been performed. The lattice constants and unit cell volume decrease with increasing rare earth atomic number from Nd to Dy, reflecting the lanthanide contraction. After nitrogenation the relative volume expansion of each nitride is around between 5% and 7%. The nitrogenation results in a good improvement in the Curie temperature, the saturation magnetization and anisotropy fields at 4.2 K, and room temperature for R3Fe29-xCrxN4. Magnetohistory effects of R3Fe29-xCrxN4 and R3Fe29-xCrx (R=Nd and Sm) are observed in a low field of 0.04 T. First order magnetization process occurs in Sm3Fe24.0Cr5.0N4 in magnetic fields of 2.8 T at 4.2 K. After nitrogenation, the easy magnetization direction of Sm3Fe24.0Cr5.0 is changed from the easy-cone structure to the uniaxial. The good intrinsic magnetic properties of Sm3Fe24.0Cr5.0N4 make this compound a hopeful candidate for new high-performance hard magnets. (C) 1998 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic investigation of crystallographic and magnetic properties of nitride R3Fe29-xVxN4 (R = Y, Ce, Nd, Sm, Gd, Tb, and Dy) has been performed. Nitrogenation leads to a relative volume expansion of about 6%. The lattice constants and unit cell volume decrease with increasing rare-earth atomic number from Nd to Dy, reflecting the lanthanide contraction. On average, the Curie temperature increases due to the nitrogenation to about 200 K compared with its parent compound. Generally speaking, nitrogenation also results in a remarkable improvement of the saturation magnetization and anisotropy fields at 4.2 K and room temperature for R3Fe29-xVxN4 compared with their parent compounds. The transition temperature indicates the spin reorientations of R3Fe29-xVxN4 for R = Nd and Sm are at around 375 and 370 K which are higher than that of R3Fe29-xVx, for R = Nd and Sm 145 and 140 K, respectively. The magnetohistory effects of R3Fe29-xVxN4 (R = Ce, Nd, and Sm) are observed in low fields of 0.04 T. After nitrogenation the easy magnetization direction of Sm3Fe26.7V2.3 is changed from an easy-cone structure to the b-axis. As a preliminary result, a maximum remanence B-r of 0.94 T, an intrinsic coercivity mu(0)H(C) of 0.75 T, and a maximum energy product (B H)(max) of 108.5 kJ m(-3) for the nitride magnet Sm3Fe26.7V2.3N4 are achieved by ball-milling at 293 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Nd:GdVO4 crystal is pumped directly into its emitting level at 913 nm for the first time to the best of our knowledge. 3.35 W output laser emitting at 1063 nm is achieved in a 1.1 at.% Nd-doped Nd:GdVO4. The crystal absorbs pumping light of 4.30 W at 913 nm and produces a very low quantity of heat with the opto-optic conversion efficiency of 77.2%. The average slope efficiency is 81.2% from 0.21 W, at the threshold, to 4.30 W of absorbed pump power. Because of the very weakly thermal effect, the near-diffraction-limit beam is easily obtained with beam quality factor of M-2 approximate to 1.1.