261 resultados para NUCLEOPHILIC FLUORINATION
Resumo:
Nucleobase-functionalized polymers are widely used in the fields of supramolecular chemistry and self-assembly, and their development for biomedical applications is also an area of interest. They are usually synthesized by tedious multistep procedures. In this study, we assess adenine as an organoinitiator/ organocatalyst for the ring-opening polymerization of lactide. L-Lactide can be quantitatively polymerized in the presence of adenine. Reaction conditions involving short reaction times and relatively low temperatures enable the access to adenine end-capped polylactide in a simple one-step procedure, in bulk, without additional catalyst. DFT calculations show that the polymerization occurs via hydrogen bond catalysis. The mechanism involves (i) a hydrogen bond between the NH9 of adenine and the carbonyl moiety of lactide, leading to an electron deficient carbon atom, and (ii) a second hydrogen bond between the N3 of adenine and the NH2 of a second adenine molecule, followed by a nucleophilic attack of the latter activated amine on the former electron deficient carbon on the monomer. For longer reaction times and higher temperatures, macrocyclic species are formed, and a mechanism involving the imidazole ring of adenine is proposed based on literature studies. Depending on the reaction conditions, adenine can thus be considered as an organoinitiator or an organocatalyst for the ring-opening polymerization of lactide.
Resumo:
Nucleobase-functionalized polymers are widely used in the fields of supramolecular chemistry and self-assembly, and their development for biomedical applications is also an area of interest. They are usually synthesized by tedious multistep procedures. In this study, we assess adenine as an organoinitiator/organocatalyst for the ring-opening polymerization of lactide. L-Lactide can be quantitatively polymerized in the presence of adenine. Reaction conditions involving short reaction times and relatively low temperatures enable the access to adenine end-capped polylactide in a simple one-step procedure, in bulk, without additional catalyst. DFT calculations show that the polymerization occurs via hydrogen bond catalysis. The mechanism involves (i) a hydrogen bond between the NH9 of adenine and the carbonyl moiety of lactide, leading to an electron deficient carbon atom, and (ii) a second hydrogen bond between the N3 of adenine and the NH2 of a second adenine molecule, followed by a nucleophilic attack of the latter activated amine on the former electron deficient carbon on the monomer. For longer reaction times and higher temperatures, macrocyclic species are formed, and a mechanism involving the imidazole ring of adenine is proposed based on literature studies. Depending on the reaction conditions, adenine can thus be considered as an organoinitiator or an organocatalyst for the ring-opening polymerization of lactide.
Resumo:
The use of organic molecules as catalysts for the ring-opening polymerization (ROP) of cyclic esters has gained much interest last years.[1] The use of a molecule of biological interest, able to initiate ROP of cyclic esters without any cocatalyst is even more interesting, as the resulting material will not contain any catalytic residue. Nucleobase-polymer conjugates development is thus an emerging area envisaging biomedical applications.[2] However, they are usually synthesized by tedious multistep procedures. Recently, adenine was used as organoinitiator for the ROP of L-lactide.[3] Reaction conditions involving short reaction times and relatively low temperatures enable the access to adenine-polylactide(Adn-PLA)conjugates in a simple one-step procedure, without additional catalyst and in the absence of solvent. In this study, computational investigations with density functional theory (DFT) were performed in order to clarify the reaction mechanism leading to the desired Adn-PLA. The results show that a hydrogen bond catalytic mechanism, involving a nucleophilic attack of the activated amine group of adenine onto the carbonyl group of lactide, seem to be plausible.
Resumo:
The topic of this thesis is the DFT computational study of the mechanisms for the synthesis of chiral 3,4,5-trisubstituted piperidines and 2,6-disubstituted morpholines. The goal of this synthesis is to use, the same substrate containing two electrophilic sites: an α,β-unsaturated ester and a ketone, which evolve according to the nucleophile used (cyanide, phenyl sulfide) through different addition and cyclization reactions. A quaternary ammonium salt is used as a catalyst for these reactions, which leads to a diastereoisomeric excess both for the reactions of morpholine and piperidine products. Studies in silico of the pathways of these reactions explain the chemoselection and diasteroselection deriving from the two nucleophiles used. In this case of piperidine products, it was also possible to validate the hypothesis of a concerted nucleophilic addition mechanism on the α,β-unsaturated site and cyclization due to an intramolecular Michael addition.
Resumo:
β-lactam compounds represent an important class of four-membered cyclic amides (azetidin-2-ones) thanks to their valuable and varied biological activities. The presence of a β-lactam ring in a series of bioactive molecules targeting different proteins, allows us to consider the azetidin-2-one a privileged structure. The constrained four-membered cyclic amide could easily undergo ring-opening reactions by nucleophilic residues in the active sites of enzymes and this is the mechanism suggested for antibacterial activity; moreover, the rigid core structure could favour and actually enhance directional noncovalent bonding for an effective ligand−receptor recognition. Nowadays monocyclic β-lactams are known as anticancer, antidiabetic, anti-tubercular, anti-inflammatory agents and as ligands of integrin receptors. In order to consider different facets of 4-azetidin-2-ones, this theis will be divided into two sections: the first one will be dedicated to the design, synthesis and characterization of biological active β-lactams (new β-lactam based integrin ligands and their different applications and novel N-thio-alkyl substituted azetidinones for the treatment of Tuberculosis); the second one instead, will be based on two projects which consider two different proprieties of β-lactams: stereochemistry, evaluated by biocatalytic methods and reactivity at C-4 position. In the first case we want to obtain enantiomerically pure 4-acetoxy-2-azetidinone, useful for synthesis of stereo-chemically defined bioactive β-lactams, while in the second case we want to study in which conditions the nucleophilic substitutions occur. A final section will be instead dedicated to the research project conducted in Philochem AG, Zurich, under the supervision of Prof. Dario Neri and Dr. Samuele Cazzamalli, based on the study of new cleavable disulfide linkers for small molecule drug conjugates targeting Fibroblast activation protein (FAP).
Resumo:
The catechol (1,2-dihydroxybenzene) is a privileged structural motif among natural antioxidants like flavonoids, owing to its reactivity with alkylperoxyl radicals due to the stability of the semiquinone radical. The exploration of the relevance and mechanism of this non-conventional antioxidant chemistry in heterogenous biomimetic systems (aqueous micelles and unilamellar liposomes) is explored for the first time in Chapter 1. Results show antioxidant behaviour that surpasses that of nature’s premiere antioxidant α-tocopherol and relies on the cross-dismutation of alkylperoxyl and hydroperoxyl radicals at the water-lipid interface with regeneration of the catechol function from the oxidized quinone. The design and synthesis of new biomimetic catechol-type antioxidants by conjugation of thiols (e.g. cysteine) with quinones highlighted an unusual 1,6-type regioselectivity, which had been previously reported but never fully rationalized. Owing to its importance both in nature and in the development of new antioxidants, we investigated it in detail in Chapter 2. We could prove the onsetting of a radical-chain mechanism intermediated by thiyl and thiosemiquinone radicals at the basis of the “anomalous nucleophilic addition” of thiols to ortho-quinones, which paves the way to better understanding of the chemistry of such systems. The oxidation of catechols to the corresponding quinones is also a key reaction in the biosynthesis of melanins, mediated by enzyme Tyrosinase.