928 resultados para NOXIOUS STIMULATION
Resumo:
BACKGROUND: Tinnitus is an often disabling condition for which there is no effective therapy. Current research suggests that tinnitus may develop due to maladaptive plastic changes and altered activity in the auditory and prefrontal cortex. Transcranial direct current stimulation (tDCS) modulates brain activity and has been shown to transiently suppress tinnitus in trials. OBJECTIVE: To investigate the efficacy and safety of tDCS in the treatment of chronic subjective tinnitus. METHODS: In a randomized, parallel, double-blind, sham-controlled study, the efficacy and safety of cathodal tDCS to the auditory cortex with anode over the prefrontal cortex was investigated in five sessions over five consecutive days. Tinnitus was assessed after the last session on day 5, and at follow-up visits 1 and 3 months post stimulation using the Tinnitus Handicap Inventory (THI, primary outcome measure), Subjective Tinnitus Severity Scale, Hospital Anxiety and Depression scale, Visual Analogue Scale, and Clinical Global Impression scale. RESULTS: 42 patients were investigated, 21 received tDCS and 21 sham stimulation. There were no beneficial effects of tDCS on tinnitus as assessed by primary and secondary outcome measures. Effect size assessed with Cohen's d amounted to 0.08 (95% CI: -0.52 to 0.69) at 1 month and 0.18 (95% CI: -0.43 to 0.78) at 3 months for the THI. CONCLUSION: tDCS of the auditory and prefrontal cortices is safe, but does not improve tinnitus. Different tDCS protocols might be beneficial.
Short Report: Spinal Cord Stimulation in Thromboangiitis Obliterans and Secondary Raynaud's-Syndrome
Resumo:
Introduction: Spinal cord stimulation (SCS) may be a treatment option in limb ischemia occurring as a result of Thromboangiitis obliterans (TAO) or secondary Raynaud's-Syndrome (SRS). The impact of SCS on disease progression and micro-perfusion was prospectively evaluated during a follow-up (FU) of 4 years. Report: Under SCS, a significant increase in trans-cutaneous oxygen tension (tcpO2) was observed in TAO and a significant increase in systolic perfusion pressure at plethysmography was observed in SRS. Complete limb preservation was achieved in all patients who had reduced tobacco consumption. Discussion: SCS is an efficient therapeutic tool in TAO and SRS. Patient selection criteria are crucial for success.
Resumo:
Previous studies have examined the experience of owning a virtual surrogate body or body part through specific combinations of cross-modal multisensory stimulation. Both visuomotor (VM) and visuotactile (VT) synchronous stimulation have been shown to be important for inducing a body ownership illusion, each tested separately or both in combination. In this study we compared the relative importance of these two cross-modal correlations, when both are provided in the same immersive virtual reality setup and the same experiment. We systematically manipulated VT and VM contingencies in order to assess their relative role and mutual interaction. Moreover, we present a new method for measuring the induced body ownership illusion through time, by recording reports of breaks in the illusion of ownership ("breaks") throughout the experimental phase. The balance of the evidence, from both questionnaires and analysis of the breaks, suggests that while VM synchronous stimulation contributes the greatest to the attainment of the illusion, a disruption of either (through asynchronous stimulation) contributes equally to the probability of a break in the illusion.
Resumo:
Background and Question Paired-pulse TMS (Transcranial Magnetic Stimulation) paradigms allow explore motor cortex physiology. The Triple Stimulation Technique (TST) improves conventional TMS in quantifying cortico-spinal conduction. The objective of our study was to compare both methods in paired-pulse paradigms of inhibition and of facilitation. Method We investigated paired pulse paradigms of 2 ms (short intra-cortical inhibition) and of 10 ms intervals (intra cortical facilitation) in a randomized order in 22 healthy subjects applying conventional TMS and the TST protocol. Results Paired-pulse paradigms by both TMS and the TST yielded comparable results of short intra- cortical inhibition and intra cortical facilitation. However, the coefficient of variation was significantly smaller for SICI paradigm using TST. Conclusion These results suggest no greater sensitivity of the TST for quantifying inhibition and facilitation. The utility of TST to better quantify the individual amount of inhibition in SICI paradigms and its clinical utility need further studies.
Resumo:
Polar flagellin proteins from Aeromonas hydrophila strain AH-3 (serotype O34) were found to be O-glycosylated with a heterogeneous heptasaccharide glycan. Two mutants with altered (light and strong) polar flagella glycosylation still able to produce flagella were previously obtained, as well as mutants lacking the O34-antigen lipopolysaccharide (LPS) but with unaltered polar flagella glycosylation. We compared these mutants, altogether with the wild type strain, in different studies to conclude that polar flagella glycosylation is extremely important for A. hydrophila adhesion to Hep-2 cells and biofilm formation. Furthermore, the polar flagella glycosylation is an important factor for the immune stimulation of IL-8 production via toll receptor 5 (TLR5).
Resumo:
BACKGROUND: Circulating progenitor cells (CPC) treatments may have great potential for the recovery of neurons and brain function. OBJECTIVE: To increase and maintain CPC with a program of exercise, muscle electro-stimulation (ME) and/or intermittent-hypobaric-hypoxia (IHH), and also to study the possible improvement in physical or psychological functioning of participants with Traumatic Brain Injury (TBI). METHODS: Twenty-one participants. Four groups: exercise and ME group (EEG), cycling group (CyG), IHH and ME group (HEG) and control group (CG). Psychological and physical stress tests were carried out. CPC were measured in blood several times during the protocol. RESULTS: Psychological tests did not change. In the physical stress tests the VO2 uptake increased in the EEG and the CyG, and the maximal tolerated workload increased in the HEG. CPC levels increased in the last three weeks in EEG, but not in CyG, CG and HEG. CONCLUSIONS: CPC levels increased in the last three weeks of the EEG program, but not in the other groups and we did not detect performed psychological test changes in any group. The detected aerobic capacity or workload improvement must be beneficial for the patients who have suffered TBI, but exercise type and the mechanisms involved are not clear.
Resumo:
Noradrenergic neurotransmission has been associated with the modulation of higher cognitive functions mediated by the prefrontal cortex. In the present study, the impact of noradrenergic stimulation on the human action-monitoring system, as indexed by eventrelated brain potentials, was examined. After the administration of a placebo or the selective 2 -adrenoceptor antagonist yohimbine, which stimulates firing in the locus ceruleus and noradrenaline release, electroencephalograpic recordings were obtained from healthy volunteers performing a letter flanker task. Yohimbine led to an increase in the amplitude of the error-related negativity in conjunction with a significant reduction of action errors. Reaction times were unchanged, and the drug did not modify the N2 in congruent versus incongruent trials, a measure of preresponse conflict, or posterror adjustments as measured by posterror slowing of reaction time. The present findings suggest that the locus ceruleusnoradrenaline system exerts a rather specific effect on human action monitoring.
Resumo:
The ventral striatum / nucleus accumbens has been implicated in the craving for drugs and alcohol which is a major reason for relapse of addicted people. Craving might be induced by drug-related cues. This suggests that disruption of craving-related neural activity in the nucleus accumbens may significantly reduce craving in alcohol-dependent patients. Here we report on preliminary clinical and neurophysiological evidence in three male patients who were treated with high frequency deep brain stimulation of the nucleus accumbens bilaterally. All three had been alcohol dependent for many years, unable to abstain from drinking, and had experienced repeated relapses prior to the stimulation. After the operation, craving was greatly reduced and all three patients were able to abstain from drinking for extended periods of time. Immediately after the operation but prior to connection of the stimulation electrodes to the stimulator, local field potentials were obtained from the externalized cables in two patients while they performed cognitive tasks addressing action monitoring and incentive salience of drug related cues. LFPs in the action monitoring task provided further evidence for a role of the nucleus accumbens in goal-directed behaviors. Importantly, alcohol related cue stimuli in the incentive salience task modulated LFPs even though these cues were presented outside of the attentional focus. This implies that cue-related craving involves the nucleus accumbens and is highly automatic.
Resumo:
Vision affords us with the ability to consciously see, and use this information in our behavior. While research has produced a detailed account of the function of the visual system, the neural processes that underlie conscious vision are still debated. One of the aims of the present thesis was to examine the time-course of the neuroelectrical processes that correlate with conscious vision. The second aim was to study the neural basis of unconscious vision, that is, situations where a stimulus that is not consciously perceived nevertheless influences behavior. According to current prevalent models of conscious vision, the activation of visual cortical areas is not, as such, sufficient for consciousness to emerge, although it might be sufficient for unconscious vision. Conscious vision is assumed to require reciprocal communication between cortical areas, but views differ substantially on the extent of this recurrent communication. Visual consciousness has been proposed to emerge from recurrent neural interactions within the visual system, while other models claim that more widespread cortical activation is needed for consciousness. Studies I-III compared models of conscious vision by studying event-related potentials (ERP). ERPs represent the brain’s average electrical response to stimulation. The results support the model that associates conscious vision with activity localized in the ventral visual cortex. The timing of this activity corresponds to an intermediate stage in visual processing. Earlier stages of visual processing may influence what becomes conscious, although these processes do not directly enable visual consciousness. Late processing stages, when more widespread cortical areas are activated, reflect the access to and manipulation of contents of consciousness. Studies IV and V concentrated on unconscious vision. By using transcranial magnetic stimulation (TMS) we show that when early visual cortical processing is disturbed so that subjects fail to consciously perceive visual stimuli, they may nevertheless guess (above chance-level) the location where the visual stimuli were presented. However, the results also suggest that in a similar situation, early visual cortex is necessary for both conscious and unconscious perception of chromatic information (i.e. color). Chromatic information that remains unconscious may influence behavioral responses when activity in visual cortex is not disturbed by TMS. Our results support the view that early stimulus-driven (feedforward) activation may be sufficient for unconscious processing. In conclusion, the results of this thesis support the view that conscious vision is enabled by a series of processing stages. The processes that most closely correlate with conscious vision take place in the ventral visual cortex ~200 ms after stimulus presentation, although preceding time-periods and contributions from other cortical areas such as the parietal cortex are also indispensable. Unconscious vision relies on intact early visual activation, although the location of visual stimulus may be unconsciously resolved even when activity in the early visual cortex is interfered with.
Resumo:
One of the greatest conundrums to the contemporary science is the relation between consciousness and brain activity, and one of the specifi c questions is how neural activity can generate vivid subjective experiences. Studies focusing on visual consciousness have become essential in solving the empirical questions of consciousness. Th e main aim of this thesis is to clarify the relation between visual consciousness and the neural and electrophysiological processes of the brain. By applying electroencephalography and functional magnetic resonance image-guided transcranial magnetic stimulation (TMS), we investigated the links between conscious perception and attention, the temporal evolution of visual consciousness during stimulus processing, the causal roles of primary visual cortex (V1), visual area 2 (V2) and lateral occipital cortex (LO) in the generation of visual consciousness and also the methodological issues concerning the accuracy of targeting TMS to V1. Th e results showed that the fi rst eff ects of visual consciousness on electrophysiological responses (about 140 ms aft er the stimulus-onset) appeared earlier than the eff ects of selective attention, and also in the unattended condition, suggesting that visual consciousness and selective attention are two independent phenomena which have distinct underlying neural mechanisms. In addition, while it is well known that V1 is necessary for visual awareness, the results of the present thesis suggest that also the abutting visual area V2 is a prerequisite for conscious perception. In our studies, the activation in V2 was necessary for the conscious perception of change in contrast for a shorter period of time than in the case of more detailed conscious perception. We also found that TMS in LO suppressed the conscious perception of object shape when TMS was delivered in two distinct time windows, the latter corresponding with the timing of the ERPs related to the conscious perception of coherent object shape. Th e result supports the view that LO is crucial in conscious perception of object coherency and is likely to be directly involved in the generation of visual consciousness. Furthermore, we found that visual sensations, or phosphenes, elicited by the TMS of V1 were brighter than identically induced phosphenes arising from V2. Th ese fi ndings demonstrate that V1 contributes more to the generation of the sensation of brightness than does V2. Th e results also suggest that top-down activation from V2 to V1 is probably associated with phosphene generation. The results of the methodological study imply that when a commonly used landmark (2 cm above the inion) is used in targeting TMS to V1, the TMS-induced electric fi eld is likely to be highest in dorsal V2. When V1 was targeted according to the individual retinotopic data, the electric fi eld was highest in V1 only in half of the participants. Th is result suggests that if the objective is to study the role of V1 with TMS methodology, at least functional maps of V1 and V2 should be applied with computational model of the TMS-induced electric fi eld in V1 and V2. Finally, the results of this thesis imply that diff erent features of attention contribute diff erently to visual consciousness, and thus, the theoretical model which is built up of the relationship between visual consciousness and attention should acknowledge these diff erences. Future studies should also explore the possibility that visual consciousness consists of several processing stages, each of which have their distinct underlying neural mechanisms.
Resumo:
We have previously demonstrated that acute third ventricle injections of both Pb2+ and Cd2+ impair the dipsogenic response elicited by three different situations: dehydration and central cholinergic or angiotensinergic stimulation. ß-Adrenergic activation is part of the multifactorial integrated systems operating in drinking behavior control in the central nervous system. In the present study acute third ventricle injections of Pb2+ (3, 30 and 300 pmol/rat) or Cd2+ (0.3, 3 and 30 pmol/rat) blocked the dipsogenic response induced by third ventricle injections of isoproterenol (ISO; 160 nmol/rat) in a dose-dependent manner. Normohydrated animals receiving ISO + NaAc (sodium acetate) or saline (controls) displayed a high water intake after 120 min (ISO + saline = 5.78 ± 0.54 ml/100 g; ISO + NaAc = 6.00 ± 0.6 ml/100 g). After the same period, animals receiving ISO but pretreated with PbAc at the highest dose employed (300 pmol/rat) drank 0.78 ± 0.23 ml/100 g while those receiving ISO and pretreated with the highest dose of CdCl2 (30 pmol/rat) presented a water intake of 0.7 ± 0.30 ml/100 g. Third ventricle injections of CdCl2 (3 nmol/rat) or PbAc (3 nmol/rat) did not modify food intake in rats deprived of food for 24 h. Thus, general central nervous system depression explaining the antidipsogenic action of the metals can be safely excluded. It is concluded that both Pb2+ and Cd2+ inhibit water intake induced by central ß-adrenergic stimulation
Resumo:
The influence of Ca2+ on hepatic gluconeogenesis was measured in the isolated perfused rat liver at different cytosolic NAD+-NADH potentials. Lactate and pyruvate were the gluconeogenic substrates and the cytosolic NAD+-NADH potentials were changed by varying the lactate to pyruvate ratios from 0.01 to 100. The following results were obtained: a) gluconeogenesis from lactate plus pyruvate was not affected by Ca2+-free perfusion (no Ca2+ in the perfusion fluid combined with previous depletion of the intracellular pools); gluconeogenesis was also poorly dependent on the lactate to pyruvate ratios in the range of 0.1 to 100; only for a ratio equal to 0.01 was a significantly smaller gluconeogenic activity observed in comparison to the other ratios. b) In the presence of Ca2+, the increase in oxygen uptake caused by the infusion of lactate plus pyruvate at a ratio equal to 10 was the most pronounced one; in Ca2+-free perfusion the increase in oxygen uptake caused by lactate plus pyruvate infusion tended to be higher for all lactate to pyruvate ratios; the most pronounced difference was observed for a lactate/pyruvate ratio equal to 1. c) In the presence of Ca2+ the effects of glucagon on gluconeogenesis showed a positive correlation with the lactate to pyruvate ratios; for a ratio equal to 0.01 no stimulation occurred, but in the 0.1 to 100 range stimulation increased progressively, producing a clear parabolic dependence between the effects of glucagon and the lactate to pyruvate ratio. d) In the absence of Ca2+ the relationship between the changes caused by glucagon in gluconeogenesis and the lactate to pyruvate ratio was substantially changed; the dependence curve was no longer parabolic but sigmoidal in shape with a plateau beginning at a lactate/pyruvate ratio equal to 1; there was inhibition at the lactate to pyruvate ratios of 0.01 and 0.1 and a constant stimulation starting with a ratio equal to 1; for the lactate to pyruvate ratios of 10 and 100, stimulation caused by glucagon was much smaller than that found when Ca2+ was present. e) The effects of glucagon on oxygen uptake in the presence of Ca2+ showed a parabolic relationship with the lactate to pyruvate ratios which was closely similar to that found in the case of gluconeogenesis; the only difference was that inhibition rather than stimulation of oxygen uptake was observed for a lactate to pyruvate ratio equal to 0.01; progressive stimulation was observed in the 0.1 to 100 range. f) In the absence of Ca2+ the effects of glucagon on oxygen uptake were different; the dependence curve was sigmoidal at the onset, with a well-defined maximum at a lactate to pyruvate ratio equal to 1; this maximum was followed by a steady decline at higher ratios; at the ratios of 0.01 and 0.1 inhibition took place; oxygen uptake stimulation caused by glucagon was generally lower in the absence of Ca2+ except when the lactate to pyruvate ratio was equal to 1. The results of the present study demonstrate that stimulation of gluconeogenesis by glucagon depends on Ca2+. However, Ca2+ is only effective in helping gluconeogenesis stimulation by glucagon at highly negative redox potentials of the cytosolic NAD+-NADH system. The triple interdependence of glucagon-Ca2+-NAD+-NADH redox potential reveals highly complex interrelations that can only be partially understood at the present stage of knowledge
Resumo:
Immunohistochemistry was used to evaluate the effects of neonatal handling and aversive stimulation during the first 10 days of life on the number of corticotrophs in the anterior lobe of the pituitary of 11-day-old male Wistar rats. Since adult rats handled during infancy respond with reduced corticosterone secretion in response to stressors and with less behavior inhibition in novel environments, we assumed that neonatal stimulation could affect pituitary morphology during this critical period of cell differentiation. Three groups of animals were studied: intact (no manipulation, N = 5), handled (N = 5) and stimulated (submitted to 3 different aversive stimuli, N = 5). The percentage of ACTH-immunoreactive cells in the anterior lobe of the pituitary (number of ACTH-stained cells divided by total number of cells) was determined by examining three slices per pituitary in which a minimum of 200 cells were counted by two independent researchers. Although animals during the neonatal period are less reactive to stress-like stimulation in terms of ACTH and corticosterone secretion, results showed that the relative number of ACTH-stained cells of neonatal handled (0.25 ± 0.01) and aversive stimulated (0.29 ± 0.03) rats was not significantly different from intact (0.30 ± 0.03) animals. Neonatal stimulation may have a differential effect on the various subpopulations of corticotroph cells in the anterior pituitary
Resumo:
The inferior colliculus is a primary relay for the processing of auditory information in the brainstem. The inferior colliculus is also part of the so-called brain aversion system as animals learn to switch off the electrical stimulation of this structure. The purpose of the present study was to determine whether associative learning occurs between aversion induced by electrical stimulation of the inferior colliculus and visual and auditory warning stimuli. Rats implanted with electrodes into the central nucleus of the inferior colliculus were placed inside an open-field and thresholds for the escape response to electrical stimulation of the inferior colliculus were determined. The rats were then placed inside a shuttle-box and submitted to a two-way avoidance paradigm. Electrical stimulation of the inferior colliculus at the escape threshold (98.12 ± 6.15 (A, peak-to-peak) was used as negative reinforcement and light or tone as the warning stimulus. Each session consisted of 50 trials and was divided into two segments of 25 trials in order to determine the learning rate of the animals during the sessions. The rats learned to avoid the inferior colliculus stimulation when light was used as the warning stimulus (13.25 ± 0.60 s and 8.63 ± 0.93 s for latencies and 12.5 ± 2.04 and 19.62 ± 1.65 for frequencies in the first and second halves of the sessions, respectively, P<0.01 in both cases). No significant changes in latencies (14.75 ± 1.63 and 12.75 ± 1.44 s) or frequencies of responses (8.75 ± 1.20 and 11.25 ± 1.13) were seen when tone was used as the warning stimulus (P>0.05 in both cases). Taken together, the present results suggest that rats learn to avoid the inferior colliculus stimulation when light is used as the warning stimulus. However, this learning process does not occur when the neutral stimulus used is an acoustic one. Electrical stimulation of the inferior colliculus may disturb the signal transmission of the stimulus to be conditioned from the inferior colliculus to higher brain structures such as amygdala
Resumo:
The antinociceptive effects of stimulating the medial (ME) and central (CE) nuclei of the amygdala in rats were evaluated by the changes in the latency for the tail withdrawal reflex to noxious heating of the skin. A 30-s period of sine-wave stimulation of the ME or CE produced a significant and short increase in the duration of tail flick latency. A 15-s period of stimulation was ineffective. Repeated stimulation of these nuclei at 48-h intervals produced progressively smaller effects. The antinociception evoked from the ME was significantly reduced by the previous systemic administration of naloxone, methysergide, atropine, phenoxybenzamine, and propranolol, but not by mecamylamine, all given at the dose of 1.0 mg/kg. Previous systemic administration of naloxone, atropine, and propranolol, but not methysergide, phenoxybenzamine, or mecamylamine, was effective against the effects of stimulating the CE. We conclude that the antinociceptive effects of stimulating the ME involve at least opioid, serotonergic, adrenergic, and muscarinic cholinergic descending mechanisms. The effects of stimulating the CE involve at least opioid, ß-adrenergic, and muscarinic cholinergic descending mechanisms.