934 resultados para NMR single-sided Compartmentalization Cells 2D_NMR Diffusion-Relaxation
Resumo:
The extent of swelling of cross-linked poly(dimethylsiloxane) and linear low-density poly(ethylene) in supercritical CO2 has been investigated using high-pressure NMR spectroscopy and microscopy. Poly(dimethylsiloxane) was cross-linked to four different cross-link densities and swollen in supercritical CO2. The Flory-Huggins interaction parameter, x, was found to be 0.62 at 300 bar and 45 degrees C, indicating that supercritical CO2 is a relatively poor solvent compared to toluene or benzene. Linear low-density poly(ethylene) was shown to exhibit negligible swelling upon exposure to supercritical CO2 up to 300 bar. The effect Of CO2 pressure on the amorphous region of the poly(ethylene) was investigated by observing changes in the H-1 T-2 relaxation times of the polymer. These relaxation times decreased with increasing pressure, which was attributed to a decrease in mobility of the polymer chains as a result of compressive pressure.
Resumo:
This study represents the first application of multi-way calibration by N-PLS and multi-way curve resolution by PARAFAC to 2D diffusion-edited H-1 NMR spectra. The aim of the analysis was to evaluate the potential for quantification of lipoprotein main- and subtractions in human plasma samples. Multi-way N-PLS calibrations relating the methyl and methylene peaks of lipoprotein lipids to concentrations of the four main lipoprotein fractions as well as 11 subfractions were developed with high correlations (R = 0.75-0.98). Furthermore, a PARAFAC model with four chemically meaningful components was calculated from the 2D diffusion-edited spectra of the methylene peak of lipids. Although the four extracted PARAFAC components represent molecules of sizes that correspond to the four main fractions of lipoproteins, the corresponding concentrations of the four PARAFAC components proved not to be correlated to the reference concentrations of these four fractions in the plasma samples as determined by ultracentrifugation. These results indicate that NMR provides complementary information on the classification of lipoprotein fractions compared to ultracentrifugation. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The wide-line H-1 nuclear magnetic resonance (NMR) spectrum of paper in equilibrium with ambient humidity consists of super-imposed relatively broad and narrow lines. The narrower line is of the order of 2 kHz wide at half the maximum height, while the broader line is of the order of 40 kHz in width at half height. On the basis of these line widths, the narrow line is assigned to water sorbed to the paper, and the broad line to the polymeric constituents of the paper. It was not possible to distinguish between the various polymeric components of paper contributing to the H-1 NMR spectra. A modified Goldman-Shen pulse sequence was used to generate a spatial magnetisation gradient between the polymer and water phases. The exchange of magnetisation between protons associated with water and those associated with the macromolecules in paper was observed. The exchange of magnetisation is discussed within a heat transfer model for homonuclear dipolar coupling, with exchange being characterised by a spin-diffusion coefficient. Consideration of the magnitude of the initial rate of the exchange process and estimates of the spin-spin relaxation times based on H-1 line widths indicate that some water must exist in a sufficiently immobile state as to allow homonuclear dipolar interactions between adjacent polymer and water protons. Thus, water sorbed onto paper must exist in at least two states in mass exchange with each other. This observation allows certain conclusions to be drawn about the ratio of free/bound water as a function of moisture content and the dispersal of water within the polymer matrix.
Resumo:
A numerical method is introduced to determine the nuclear magnetic resonance frequency of a donor (P-31) doped inside a silicon substrate under the influence of an applied electric field. This phosphorus donor has been suggested for operation as a qubit for the realization of a solid-state scalable quantum computer. The operation of the qubit is achieved by a combination of the rotation of the phosphorus nuclear spin through a globally applied magnetic field and the selection of the phosphorus nucleus through a locally applied electric field. To realize the selection function, it is required to know the relationship between the applied electric field and the change of the nuclear magnetic resonance frequency of phosphorus. In this study, based on the wave functions obtained by the effective-mass theory, we introduce an empirical correction factor to the wave functions at the donor nucleus. Using the corrected wave functions, we formulate a first-order perturbation theory for the perturbed system under the influence of an electric field. In order to calculate the potential distributions inside the silicon and the silicon dioxide layers due to the applied electric field, we use the multilayered Green's functions and solve an integral equation by the moment method. This enables us to consider more realistic, arbitrary shape, and three-dimensional qubit structures. With the calculation of the potential distributions, we have investigated the effects of the thicknesses of silicon and silicon dioxide layers, the relative position of the donor, and the applied electric field on the nuclear magnetic resonance frequency of the donor.
Resumo:
NMR spectroscopy and relaxometry were used to investigate microemulsion formation in supercritical CO2. The droplets were stabilised by the salt of a perfluorinated polyether. Spontaneous microemulsion formation was observed over a period of 5 h in the absence of applied sheer. Time-resolved relaxation times of the surfactant tail showed a stepwise increase in mobility of the tail over this period. Conversely, the translational mobility of water confined within the droplet decreased over the same interval. This data is consistent with the gradual decrease in droplet size as time progressed. Indeed, NMR self-diffusion coefficients were used to show that droplets with a radius of approximately 5 nm were formed at equilibrium.
Resumo:
The diffusion of styrene into linear low density polyethylene in a solution of supercritical CO2 was investigated using NMR microimaging. For both pure styrene and styrene dissolved in supercritical CO2, the diffusion was found to follow Fickian kinetics. Supercritical CO2 was found to enhance the rate and extent of diffusion of styrene into the substrate by up to three times under the conditions of this investigation, compared to pure styrene. NMR imaging was used to measure the concentration profiles of the styrene penetrants in real time, and the results were fitted to a Fickian model for diffusion. At a CO2 pressure of 150 bar and temperature of 40 degrees C, the diffusion coefficient of a 30 wt-% solution of styrene into LLDPE was calculated to be 1 X 10(-11) m(2). s(-1). This is significantly faster than the diffusion coefficient measured for pure styrene diffusion at 40 degrees C (3 x 10(-12) m(2). s(-1)). The diffusion coefficients determined by gravimetric analysis were slightly higher than those determined by the imaging method. This was probably due to residual styrene and/or polystyrene adhering to the surface of the films in the gravimetric technique.
Resumo:
The work described in this thesis has been concerned with exploring the potential uses of ultrasound in Nuclear Magnetic Resonance (NMR) spectroscopy, The NMR spectra of liquids provide detailed structural information that may be deduced from the chemical shifts and spin-spin coupling, that are evident in the narrow resonances, arising from some of the nuclear broadening interactions being reduced to zero. In the solid state, all of the nuclear broadening interactions are present and broad lines in the NMR spectrum are observed. Current techniques employed to reduce the line widths in solids are based on coherent averaging techniques such as MAS NMR1,2 which can remove first order interactions. Recently DOR3 and DAS4 have become available to remove higher order interactions. SINNMR (Sonically Induced Narrowing of the NMR spectra of solids) has been reported by Homer et al5 and developed by Homer and Howard6 to reduce the line widths of solids. The basis of their work is the proposal that a colloidal suspension of solid particles can be made to move like large molecules by using ultrasonic agitation. The advantage of the technique is that the particles move incoherently removing all of the nuclear interactions responsible for broad lines. This thesis describes work on the extension of SINNMR by showing that the line width of 27AI and 11B for the glass Na20/B203/AI203 can be reduced by placing solid particles in a colloidal suspension. Further line width reduction is possible by applying ultrasound, at 2 MHz, of sufficient intensity. It is proposed that a cavitation field is responsible for imparting sufficient rotational motion to the solid particles to partially average the nuclear interactions responsible for broad lines. Rapid stirring of the colloidal suspension generates turbulent flow, however, the motion is insufficient to narrow the line widths for 27AI in the glass. Investigations of sonochemical reactions for in situ rate measurements by NMR have been made. 8y using the Weissler reaction7, it has been shown that ultrasonic cavitation is possible up to 10MHz. Preliminary studies have been carried out into the rate of ultrasonic polymerisation of methylmethacrylate by NMR. Long range order in liquid crystals can imposed when they are aligned in the presence a magnetic field. The degree of alignment can be monitored by NMR using, for example a deuterated solute added to the liquid crystal8. Ultrasonic streaming can then be employed to deflect the directors of the liquid crystal from their equilibrium position, resulting in a change In the NMR spectrum. The angle of deflection has been found for the thermotropic liquid crystal (I35) to be ca, 35° and for the lyotropic (ZLI-1167) to be ca, 20°, Mechanical stirring can used to re- orientate the liquid crystal but was found to give a smaller deflection, In a separate study, that did not use ultrasound, it has been found that the signal to noise ratio of 13C NMR signals can be enhanced by rapidly stirring a Iiquid. Accelerating the diffusion of nuclei out of the coil region enables M0 to be re-established more rapidly than the normal relaxation process. This allows the pulse repetition rate to be reduced without saturating the spin system. The influence of varying the relaxation delay, acquisition time and inter-pulse delay have been studied and parameters optimised. By studying cholesterol the technique was found to be most effective for nuclei with long relaxation times, such as quaternary carbon sites. Key Worde: NMR, Ulf.rasciund, 1,.lqi.fi!:l cryllltalt!h SCll1C1otlemlstryl I!r1hano~d algnflllf
Resumo:
Diffusion-ordered spectroscopy (DOSY) is a powerful technique for mixture analysis, but in its basic form it cannot separate the component spectra for species with very similar diffusion coefficients. It has been recently demonstrated that the component spectra of a mixture of isomers with nearly identical diffusion coefficients (the three dihydroxybenzenes) can be resolved using matrix-assisted DOSY (MAD), in which diffusion is perturbed by the addition of a co-solute such as a surfactant [R. Evans, S. Haiber, M. Nilsson, G. A. Morris, Anal. Chem. 2009, 81, 4548-4550]. However, little is known about the conditions required for such a separation, for example, the concentrations and concentration ratios of surfactant and solutes. The aim of this study was to explore the concentration range over whichmatrix-assisted DOSY using the surfactant SDS can achieve diffusion resolution of a simple model set of isomers, the monomethoxyphenols. The results show that the separation is remarkably robust with respect to both the concentrations and the concentration ratios of surfactant and solutes, supporting the idea that MAD may become a valuable tool formixture analysis. © 2010 John Wiley & Sons, Ltd.
Resumo:
Appealingly simple: A new method is described that allows the diffusion coefficient of a small molecule to be estimated given only the molecular weight and the viscosity of the solvent used. This method makes possible the quantitative interpretation of the diffusion domain of diffusion-ordered NMR spectra (see picture). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
An investigation has been made of the microstructural stability of aluminide diffusion coatings during post-coating thermal exposure. This study has employed edge-on transmission electron microscopy to examine high-activity pack aluminised single crystals of a gamma prime strengthened nickel-base superalloy. The influence of exposure temperature, duration and atmosphere as well as the initial coating thickness has been assessed. Two major processes have been found to contribute to microstructural changes in the coating. These are, firstly, the transformation of the coating matrix (β-phase, nominally NiAl) to other Ni-Al based phases, especially γ' (nominally Ni3(Al, Ti)) and, secondly, the precipitation of chromium containing phases. The work has enabled the roles of three processes contributing to γ formation, namely: oxidation of the coating surface, interdiffusion with the substrate and ageing of the coating, to be understood. In addition, the factors leading to the formation of a sequence of chromium-containing phases have been identified.
Resumo:
The poor retention and efficacy of instilled drops as a means of delivering drugs to the ophthalmic environment is well-recognised. The potential value of contact lenses as a means of ophthalmic drug delivery, and consequent improvement of pre-corneal retention is one obvious route to the development of a more effective ocular delivery system. Furthermore, the increasing availability and clinical use of daily disposable contact lenses provides the platform for the development of viable single-day use drug delivery devices based on existing materials and lenses. In order to provide a basis for the effective design of such devices, a systematic understanding of the factors affecting the interaction of individual drugs with the lens matrix is required. Because a large number of potential structural variables are involved, it is necessary to achieve some rationalisation of the parameters and physicochemical properties (such as molecular weight, charge, partition coefficients) that influence drug interactions. Ophthalmic dyes and structurally related compounds based on the same core structure were used to investigate these various factors and the way in which they can be used in concert to design effective release systems for structurally different drugs. Initial studies of passive diffusional release form a necessary precursor to the investigation of the features of the ocular environment that over-ride this simple behaviour. Commercially available contact lenses of differing structural classifications were used to study factors affecting the uptake of the surrogate actives and their release under 'passive' conditions. The interaction between active and lens material shows considerable and complex structure dependence, which is not simply related to equilibrium water content. The structure of the polymer matrix itself was found to have the dominant controlling influence on active uptake; hydrophobic interaction with the ophthalmic dye playing a major role. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Resumo:
The dynamics, shape, deformation, and orientation of red blood cells in microcirculation affect the rheology, flow resistance and transport properties of whole blood. This leads to important correlations of cellular and continuum scales. Furthermore, the dynamics of RBCs subject to different flow conditions and vessel geometries is relevant for both fundamental research and biomedical applications (e.g drug delivery). In this thesis, the behaviour of RBCs is investigated for different flow conditions via computer simulations. We use a combination of two mesoscopic particle-based simulation techniques, dissipative particle dynamics and smoothed dissipative particle dynamics. We focus on the microcapillary scale of several μm. At this scale, blood cannot be considered at the continuum but has to be studied at the cellular level. The connection between cellular motion and overall blood rheology will be investigated. Red blood cells are modelled as viscoelastic objects interacting hydrodynamically with a viscous fluid environment. The properties of the membrane, such as resistance against bending or shearing, are set to correspond to experimental values. Furthermore, thermal fluctuations are considered via random forces. Analyses corresponding to light scattering measurements are performed in order to compare to experiments and suggest for which situations this method is suitable. Static light scattering by red blood cells characterises their shape and allows comparison to objects such as spheres or cylinders, whose scattering signals have analytical solutions, in contrast to those of red blood cells. Dynamic light scattering by red blood cells is studied concerning its suitability to detect and analyse motion, deformation and membrane fluctuations. Dynamic light scattering analysis is performed for both diffusing and flowing cells. We find that scattering signals depend on various cell properties, thus allowing to distinguish different cells. The scattering of diffusing cells allows to draw conclusions on their bending rigidity via the effective diffusion coefficient. The scattering of flowing cells allows to draw conclusions on the shear rate via the scattering amplitude correlation. In flow, a RBC shows different shapes and dynamic states, depending on conditions such as confinement, physiological/pathological state and cell age. Here, two essential flow conditions are studied: simple shear flow and tube flow. Simple shear flow as a basic flow condition is part of any more complex flow. The velocity profile is linear and shear stress is homogeneous. In simple shear flow, we find a sequence of different cell shapes by increasing the shear rate. With increasing shear rate, we find rolling cells with cup shapes, trilobe shapes and quadrulobe shapes. This agrees with recent experiments. Furthermore, the impact of the initial orientation on the dynamics is studied. To study crowding and collective effects, systems with higher haematocrit are set up. Tube flow is an idealised model for the flow through cylindric microvessels. Without cell, a parabolic flow profile prevails. A single red blood cell is placed into the tube and subject to a Poiseuille profile. In tube flow, we find different cell shapes and dynamics depending on confinement, shear rate and cell properties. For strong confinements and high shear rates, we find parachute-like shapes. Although not perfectly symmetric, they are adjusted to the flow profile and maintain a stationary shape and orientation. For weak confinements and low shear rates, we find tumbling slippers that rotate and moderately change their shape. For weak confinements and high shear rates, we find tank-treading slippers that oscillate in a limited range of inclination angles and strongly change their shape. For the lowest shear rates, we find cells performing a snaking motion. Due to cell properties and resultant deformations, all shapes differ from hitherto descriptions, such as steady tank-treading or symmetric parachutes. We introduce phase diagrams to identify flow regimes for the different shapes and dynamics. Changing cell properties, the regime borders in the phase diagrams change. In both flow types, both the viscosity contrast and the choice of stress-free shape are important. For in vitro experiments, the solvent viscosity has often been higher than the cytosol viscosity, leading to a different pattern of dynamics, such as steady tank-treading. The stress-free state of a RBC, which is the state at zero shear stress, is still controversial, and computer simulations enable direct comparisons of possible candidates in equivalent flow conditions.