949 resultados para NITROUS-OXIDE EMISSIONS
Resumo:
El cultivo de café es de gran importancia a nivel mundial (ICO, 2011), y en el Ecuador ha sido uno de los cultivos más importantes en la generación de divisas (COFENAC, 2011). Sin embargo en los sistemas productivos de este país se puede apreciar el uso inapropiado de fertilizantes, lo que conlleva a una pérdida de nutrientes, por lo que es importante estudiar las dosis adecuadas para la fertilización tanto mineral como orgánica. El objetivo del trabajo fue evaluar el efecto de la fertilización mineral y orgánica en diferentes dosis en un monocultivo de café en la provincia de Loja, sobre las propiedades del suelo, la emisión de los principales gases que provocan el efecto invernadero y la fenología y productividad del cultivo. En la provincia de Loja (Ecuador) se seleccionó un área de 2.520 m2 en la que se establecieron 21 parcelas de café arábigo (Coffea arabica L.) var. caturra y se aplicó tres tratamientos con tres repeticiones de fertilización mineral y tres orgánicos con dosis: bajas minerales (MIN 1= 157 Kg NPK ha-1 año-1 para el primer año y 425 Kg NPK ha-1 año-1 para el segundo año), medias minerales (MIN 2= 325 Kg NPK ha-1 año-1 para el primer año y 650 Kg NPK ha-1 año-1 en el segundo año) y altas minerales (MIN 3= 487 y 875 Kg NPK ha-1 año-1 para el primer y segundo año respectivamente), bajas orgánicas (ORG 1= 147 Kg NPK ha-1 año-1 en el primer año y 388 Kg NPK ha-1 año-1 en el año dos), medias orgánicas (ORG 2= 265 Kg NPK ha-1 año-1 para el primer año y 541 Kg NPK ha-1 año-1 en el segundo año), altas orgánicas (ORG 3= 368 Kg NPK ha-1 año-1 para el primer año y 727 Kg NPK ha-1 año-1 en el segundo año) y fertilización cero (TES = sin fertilización). Se usó urea, roca fosfórica y muriato de potasio en la fertilización mineral y humus (Bioabor) en la orgánica, más un tratamiento testigo, cada tratamiento tuvo tres repeticiones. El tiempo de evaluación de los fertilizantes aplicados fue de dos años consecutivos, la fertilización se la realizó dos veces por año y en base a análisis del suelo y demandas nutricionales del cultivo. para determinar las características del suelo se realizó muestreos de suelos en cada parcela a una profundidad de 20 cm de estas muestras los parámetro iniciales determinados fueron: color (Munsell), textura (método del hidrómetro), pH (relación 1:2,5 suelo-agua), Materia orgánica (Walkey y Black), Nitrógeno (Micro Kjendahl), Fósforo (Bray y Kurtz), Potasio (Olsen), estos procesos se repitieron cada seis meses para poder evaluar los cambios de que se producen debido a la fertilización mineral y orgánica en el cultivo. Las emisiones de gases efecto invernadero desde el suelo al ambiente se determinaron por el método de cámara cerrada (Rondón, 2000) y la concentración por cromatografía de gases. Las mediciones fisiológicas (altura de planta, ancho de copa, grosor de tallo y producción) se las evaluó cada dos meses, a excepción de la producción que fue anual al término de cada cosecha. Además se realizó el análisis económico de la productividad del cultivo. El análisis estadístico de datos se lo realizó con el programa SPSS v. 17.0. Las medias fueron comprobadas mediante ANOVAS de un factor con test de Tukey (P < 0,05). El beneficio económico se estimó en términos de ingresos y gastos totales que se presentaron en el ensayo. Los resultados obtenidos al término del ensayo indican que los tratamientos MIN 2 y MIN 3 produjeron cambios más significativos en comparación con los otros tratamientos establecidos en la mejora de fertilidad del suelo, el pH ha sido menos afectado en la acidificación en comparación con los tratamientos orgánicos que se han acidificado mayormente; la materia orgánica (MO) tuvo incrementos considerablemente bueno en estos dos tratamientos, sin embargo fueron superados por los tratamientos de fertilización orgánica; el nitrógeno total (Nt )y el potasio (K) también presentaron mejores valores al termino del ensayo y el fósforo (P) mostro incrementos buenos aunque un poco menores que los de los tratamientos ORG 2 y ORG 3. En lo que respecta a las emisiones de gases efecto invernadero, los flujos acumulados de óxido nitroso (N2O) en los dos años han aumentado en todos los tratamientos en comparación con el tratamiento Testigo, pero de manera considerable y con mayores flujos en el tratamiento MIN 3 y MIN 2 que se podrían considerarse los de mayor contaminación por N2O al ambiente lo que se le atribuye a las dosis de fertilización mineral aplicadas en el periodo de investigación, los tratamiento MIN 1 y todos los tratamientos orgánicos muestran menores emisiones al ambiente. Las emisiones de metano (CH4) no muestran mayores diferencias de emisiones entre tratamientos, siendo los mayores emisores los tratamientos ORG 3 y ORG 2 posiblemente debido al abono orgánico y añadido al suelo; para las emisiones de dióxido de carbono (CO2) de manera similar al CH4 el tratamiento ORG 3 fue el que presento mayores emisiones, los flujos de CO2 al ambiente de los otros tratamientos fueron menores y no presentaron diferencias significativas entre ellos. La variables fisiológicas en todos los casos apoyaron al desarrollo de las plantas de café, esto al ser comparadas con el tratamiento Testigo, sin embargo las que alcanzaron las mayores altitudes, anchos de copas y diámetro de tallo fueron las plantas del tratamiento MIN 3, seguido del MIN 3, no mostrando significancia entre ellos, y para los tratamientos orgánicos el que presento muy buenos resultados en estas variables ha sido el ORG 3, el cual no presento diferencias significativas con el MIN 2, lo cual comprueba que la fertilización mineral es más efectiva en este caso frente a la orgánica. Para el primer año de producción el tratamiento mineral con fertilización MIN 3 es el que obtuvo mayor producción no presentando diferencia estadística con el tratamiento con el MIN 2, no obstante fueron significativamente mayores que los otros tratamientos. Vale indicar que también el tratamiento MIN 1 y el tratamiento ORG 3 han presentado una producción considerable de café no mostrando diferencias estadísticas entre ellos. Para el segundo año la producción el cultivo mostró mayores rendimientos que el primer año de evaluación en todos los tratamientos, esto debido a la fisiología propia del cultivo y por otra parte se atribuye a la adición de fertilizantes que se ha realizado durante todo el ensayo; de manera similar al anterior los tratamientos MIN 3 y MIN 2 obtuvieron mejores rendimientos, no enseñando diferencias estadísticas significativas entre ellos, no obstante el tratamiento mineral dosis MEDIA no presentó significancia estadística con el ORG 3. El benéfico económico ha resultado mayor en el tratamiento MIN 3 y MIN 2, aunque el tratamiento MIN 2, es el que obtiene la mejor relación costo-beneficio; los tratamientos ORG 2 y ORG 3 y Testigo has producido beneficios negativos para el productor. En cuanto a la parte ambiental se considera que los mejores tratamientos en cuanto ha cuidado ambiental serían los tratamientos MIN 1 y ORG 1, sin embargo a nivel de producción y rentabilidad para el productor baja. ABSTRACT Coffee growing has great importance worldwide (ICO, 2011), and in Ecuador, it has been one of the most important crops to generate income (COFENAC, 2011). However, in the productive systems of this country, the inappropriate use of fertilizers has been observed which produces loss of nutrients, thus it is important to study suitable doses for mineral and organic fertilizing. The purpose of the study was to evaluate the effect of mineral and organic fertilizing at different doses in a coffee monoculture in the province of Loja on soil characteristics, emission of the main gasses that produce the greenhouse effect and the phenology and productivity of crops. In the province of Loja (Ecuador) an area of 2.520 m2 was chosen, where 21 plots of Arabica coffee (Coffea arabica L.), the caturra variety were cultivated and three treatments with three repetitions each one for mineral and organic fertilization were used with doses that ranged from: mineral low (MIN 1= 157 Kg NPK ha-1 año-1 for the first year y 425 Kg NPK ha-1 año-1 for the second year), mineral medium (MIN 2= 325 Kg NPK ha-1 año-1 for the first year y 650 Kg NPK ha-1 año-1 I the second year) y mineral high (MIN 3= 487 y 875 Kg NPK ha-1 año-1 for the first and second year respectively), organic low (ORG 1= 147 Kg NPK ha-1 año-1 in the first year y 388 Kg NPK ha-1 año-1 in the second year), organics medium (ORG 2= 265 Kg NPK ha-1 año-1 for the first year y 541 Kg NPK ha-1 año-1 in the second year), organics high (ORG 3= 368 Kg NPK ha-1 año-1 for the first year and 727 Kg NPK ha-1 año-1 in the second year) y fertilization zero (TES = no fertilization).; urea, phosphoric rock and muriate of potash were used in the mineral fertilization and humus (Bioabor) in the organic, plus a blank treatment. Time to evaluate the applied fertilizers was for two consecutive years, fertilization was done twice per year based on soil analysis and nutritional requirements of the crops. In order to determine the characteristics of the soil, samples of soil in each plot with a depth of 20 cm were done; from these samples, the determined initial parameters were: color (Munsell), texture (hydrometer method), pH (soil-water 1:2,5 relation), organic matter (Walkey y Black), nitrogen (Micro Kjendahl), phosphorus (Bray y Kurtz), potassium (Olsen); these processes were repeated each six months in order to evaluate the changes that are produced due to mineral and organic fertilization in the crops. The emissions of greenhouse gasses from the soil to the atmosphere were determined by using enclosure method (Rondón, 2000) and the concentration, by using gas chromatography during the whole testing. The physiological measures (plant height, width of the top of the tree, thickness of the stem and production) were evaluated each two months, except for production which was annual at the end of each harvest. Moreover, the economic analysis of the productivity of the crops was done. The statistical analysis of the data was done using SPSS v. 17.0. The means were proved by ANOVAS with a factor of a Tukey test (P < 0,05). The economic benefit was estimated in terms of incomes and total expenses which were presented in the essay. The results obtained at the end of the essay show that the MIN 2 and MIN 3 treatments produced more meaningful changes in comparison with the other treatments used to improve soil fertility; pH was less affected in the acidification compared with the organic treatments which were greatly acidified; organic matter (MO) had increased considerably in these two treatments; however, they were surpassed by the organic treatments of fertilization; total nitrogen (Nt) and potassium (K) also presented better results at the end of the essay and phosphorus (P) showed good increasing figures although a little lower compared with ORG 2 and ORG 3 treatments. Regarding the emission of the greenhouse gasses, the fluxes accumulated from nitrous oxide (N2O) in two years increased in all the treatments in comparison with the blank treatment, but in a greater form and with higher fluxes in the MIN 3 and MIN 2 treatments which can be considered as the ones with greater contamination of N2O in the atmosphere, this can be due to the applied mineral doses to fertilize during the process; MIN 1 treatments and all the organic ones showed lower emission to the atmosphere. Methane emissions (CH4) did not show major differences in emissions in the treatments, being the greater emissions the ORG 3 and ORG 2 treatments; this is possibly due to the organic compost added to the soil; regarding carbon dioxide (CO2) emissions, in a similar way to CH4, the ORG 3 treatment was the one that presented greater emissions, the CO2 emissions to the atmosphere in the other treatments were lower and did not present meaningful differences among them. The physiological variables in all the cases helped coffee crops grow, this was observed when compared with the blank treatment; however, plants that reached the greatest height, width of top and diameter of stem were the plants of the MIN 3 treatment, followed by MIN 3, which did not show much significance among them, and for the organic treatments, the one that presented great results in these variables was ORG 3, which did not show meaningful differences compared with MIN 2, which proves that mineral fertilization is more effective in this case compared with the organic. In the first year of production, the mineral treatment with MIN 3 fertilization obtained greater production and thus did not show statistical difference with MIN 2 treatment, although the other treatments were greater. It is worth mentioning that MIN 1 treatment and ORG 3 treatment presented a meaningful production of coffee, not showing statistical differences among them. For the second year, the production of the crops showed greater profits than in the first year of evaluation in all the treatments, this was due to the physiological properties of the crops and on the other hand, it might be due to the addition of fertilizers during the whole essay; in a similar way, MIN 3 and MIN 2 performed better, not showing greater statistical differences among them, although the mineral treatment MEDIUM doses did not show statistical difference compared with ORG 3. The economic benefit was greater in the MIN 3 and MIN 2 treatments, although MIN 2 treatment is the one that shows the best cost-benefit ratios; ORG 2 and ORG 3 treatments and the blank produced negative benefits for the producer. Regarding the environment, the best treatments to care for the atmosphere are considered to be MIN 1 and ORG 1 treatments; however, regarding production volume and profitability they were low for the producer.
Resumo:
The DNDC (DeNitrification and DeComposition) model was first developed by Li et al. (1992) as a rain event-driven process-orientated simulation model for nitrous oxide, carbon dioxide and nitrogen gas emissions from the agricultural soils in the U.S. Over the last 20 years, the model has been modified and adapted by various research groups around the world to suit specific purposes and circumstances. The Global Research Alliance Modelling Platform (GRAMP) is a UK-led initiative for the establishment of a purposeful and credible web-based platform initially aimed at users of the DNDC model. With the aim of improving the predictions of soil C and N cycling in the context of climate change the objectives of GRAMP are to: 1) to document the existing versions of the DNDC model; 2) to create a family tree of the individual DNDC versions; 3) to provide information on model use and development; and 4) to identify strengths, weaknesses and potential improvements for the model.
Resumo:
Intensive farm systems handle large volume of livestock wastes, resulting in adverse environmental effects, such as gaseous losses into the atmosphere in form of ammonia (NH3) and greenhouse gases (GHG), i.e. methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O). In this study, the manure management continuum of slurry storage with impermeable cover and following cattle slurry band spreading and incorporation to soil was assessed for NH3 and GHG emissions. The experiment was conducted in an outdoor covered storage (flexible bag system) (study I), which collected the slurry produced in 7 dairy cattle farms (2,000 m3 slurry) during 12 days in the northern Spain.
Resumo:
We show that the heme-copper terminal oxidases of Thermus thermophilus (called ba3 and caa3) are able to catalyze the reduction of nitric oxide (NO) to nitrous oxide (N2O) under reducing anaerobic conditions. The rate of NO consumption and N2O production were found to be linearly dependent on enzyme concentration, and activity was abolished by enzyme denaturation. Thus, contrary to the eukaryotic enzyme, both T. thermophilus oxidases display a NO reductase activity (3.0 ± 0.7 mol NO/mol ba3 × min and 32 ± 8 mol NO/mol caa3 × min at [NO] ≈ 50 μM and 20°C) that, though considerably lower than that of bona fide NO reductases (300–4,500 mol NO/mol enzyme × min), is definitely significant. We also show that for ba3 oxidase, NO reduction is associated to oxidation of cytochrome b at a rate compatible with turnover, suggesting a mechanism consistent with the stoichiometry of the overall reaction. We propose that the NO reductase activity of T. thermophilus oxidases may depend on a peculiar CuB+ coordination, which may be revealed by the forthcoming three-dimensional structure. These findings support the hypothesis of a common phylogeny of aerobic respiration and bacterial denitrification, which was proposed on the basis of structural similarities between the Pseudomonas stutzeri NO reductase and the cbb3 terminal oxidases. Our findings represent functional evidence in support of this hypothesis.
Resumo:
Wetland ecosystems provide many valuable ecosystem services, including carbon (C) storage and improvement of water quality. Yet, restored and managed wetlands are not frequently evaluated for their capacity to function in order to deliver on these values. Specific restoration or management practices designed to meet one set of criteria may yield unrecognized biogeochemical costs or co-benefits. The goal of this dissertation is to improve scientific understanding of how wetland restoration practices and waterfowl habitat management affect critical wetland biogeochemical processes related to greenhouse gas emissions and nutrient cycling. I met this goal through field and laboratory research experiments in which I tested for relationships between management factors and the biogeochemical responses of wetland soil, water, plants and trace gas emissions. Specifically, I quantified: (1) the effect of organic matter amendments on the carbon balance of a restored wetland; (2) the effectiveness of two static chamber designs in measuring methane (CH4) emissions from wetlands; (3) the impact of waterfowl herbivory on the oxygen-sensitive processes of methane emission and coupled nitrification-denitrification; and (4) nitrogen (N) exports caused by prescribed draw down of a waterfowl impoundment.
The potency of CH4 emissions from wetlands raises the concern that widespread restoration and/or creation of freshwater wetlands may present a radiative forcing hazard. Yet data on greenhouse gas emissions from restored wetlands are sparse and there has been little investigation into the greenhouse gas effects of amending wetland soils with organic matter, a recent practice used to improve function of mitigation wetlands in the Eastern United States. I measured trace gas emissions across an organic matter gradient at a restored wetland in the coastal plain of Virginia to test the hypothesis that added C substrate would increase the emission of CH4. I found soils heavily loaded with organic matter emitted significantly more carbon dioxide than those that have received little or no organic matter. CH4 emissions from the wetland were low compared to reference wetlands and contrary to my hypothesis, showed no relationship with the loading rate of added organic matter or total soil C. The addition of moderate amounts of organic matter (< 11.2 kg m-2) to the wetland did not greatly increase greenhouse gas emissions, while the addition of high amounts produced additional carbon dioxide, but not CH4.
I found that the static chambers I used for sampling CH4 in wetlands were highly sensitive to soil disturbance. Temporary compression around chambers during sampling inflated the initial chamber CH4 headspace concentration and/or lead to generation of nonlinear, unreliable flux estimates that had to be discarded. I tested an often-used rubber-gasket sealed static chamber against a water-filled-gutter seal chamber I designed that could be set up and sampled from a distance of 2 m with a remote rod sampling system to reduce soil disturbance. Compared to the conventional design, the remotely-sampled static chambers reduced the chance of detecting inflated initial CH4 concentrations from 66 to 6%, and nearly doubled the proportion of robust linear regressions from 45 to 86%. The new system I developed allows for more accurate and reliable CH4 sampling without costly boardwalk construction.
I explored the relationship between CH4 emissions and aquatic herbivores, which are recognized for imposing top-down control on the structure of wetland ecosystems. The biogeochemical consequences of herbivore-driven disruption of plant growth, and in turn, mediated oxygen transport into wetland sediments, were not previously known. Two growing seasons of herbivore exclusion experiments in a major waterfowl overwintering wetland in the Southeastern U.S. demonstrate that waterfowl herbivory had a strong impact on the oxygen-sensitive processes of CH4 emission and nitrification. Denudation by herbivorous birds increased cumulative CH4 flux by 233% (a mean of 63 g CH4 m-2 y-1) and inhibited coupled nitrification-denitrification, as indicated by nitrate availability and emissions of nitrous oxide. The recognition that large populations of aquatic herbivores may influence the capacity for wetlands to emit greenhouse gases and cycle nitrogen is particularly salient in the context of climate change and nutrient pollution mitigation goals. For example, our results suggest that annual emissions of 23 Gg of CH4 y-1 from ~55,000 ha of publicly owned waterfowl impoundments in the Southeastern U.S. could be tripled by overgrazing.
Hydrologically controlled moist-soil impoundment wetlands provide critical habitat for high densities of migratory bird populations, thus their potential to export nitrogen (N) to downstream waters may contribute to the eutrophication of aquatic ecosystems. To investigate the relative importance of N export from these built and managed habitats, I conducted a field study at an impoundment wetland that drains into hypereutrophic Lake Mattamuskeet. I found that prescribed hydrologic drawdowns of the impoundment exported roughly the same amount of N (14 to 22 kg ha-1) as adjacent fertilized agricultural fields (16 to 31 kg ha-1), and contributed approximately one-fifth of total N load (~45 Mg N y-1) to Lake Mattamuskeet. Ironically, the prescribed drawdown regime, designed to maximize waterfowl production in impoundments, may be exacerbating the degradation of habitat quality in the downstream lake. Few studies of wetland N dynamics have targeted impoundments managed to provide wildlife habitat, but a similar phenomenon may occur in some of the 36,000 ha of similarly-managed moist-soil impoundments on National Wildlife Refuges in the southeastern U.S. I suggest early drawdown as a potential method to mitigate impoundment N pollution and estimate it could reduce N export from our study impoundment by more than 70%.
In this dissertation research I found direct relationships between wetland restoration and impoundment management practices, and biogeochemical responses of greenhouse gas emission and nutrient cycling. Elevated soil C at a restored wetland increased CO2 losses even ten years after the organic matter was originally added and intensive herbivory impact on emergent aquatic vegetation resulted in a ~230% increase in CH4 emissions and impaired N cycling and removal. These findings have important implications for the basic understanding of the biogeochemical functioning of wetlands and practical importance for wetland restoration and impoundment management in the face of pressure to mitigate the environmental challenges of global warming and aquatic eutrophication.
Resumo:
Data on the N2O contents of marine sea water from the Northeast Atlantic Ocean are presented. The N2O content of marine air is rather constant. The data are in accordance with earlier measurements. The sea water down to depth greater tha 1000 meters is considerably aupersaturated with N2O with respect to air. Supersaturation values obtain from surface water allow the conclusion that part of the North Atlantic acts as a net cource of atmospheric N2O.
Resumo:
PigBal is a mass balance model that uses pig diet, digestibility and production data to predict the manure solids and nutrients produced by pig herds. It has been widely used for designing piggery effluent treatment systems and sustainable reuse areas at Australian piggeries. More recently, PigBal has also been used to estimate piggery volatile solids production for assessing greenhouse gas emissions for statutory reporting purposes by government, and for evaluating the energy potential from anaerobic digestion of pig effluent. This paper has compared PigBal predictions of manure total, volatile, and fixed solids, and nitrogen (N), phosphorus (P) and potassium (K), with manure production data generated in a replicated trial, which involved collecting manure from pigs housed in metabolic pens. Predictions of total, volatile, and fixed solids and K in the excreted manure were relatively good (combined diet R2 ≥ 0.79, modelling efficiency (EF) ≥ 0.70) whereas predictions of N and P, were generally less accurate (combined diet R2 0.56 and 0.66, EF 0.19 and –0.22, respectively). PigBal generally under-predicted lower N values while over-predicting higher values, and generally over-predicted manure P production for all diets. The most likely causes for this less accurate performance were ammonium-N volatilisation losses between manure excretion and sample analysis, and the inability of PigBal to account for higher rates of P uptake by pigs fed diets containing phytase. The outcomes of this research suggest that there is a need for further investigation and model development to enhance PigBal’s capabilities for more accurately assessing nutrient loads. However, PigBal’s satisfactory performance in predicting solids excretion demonstrates that it is suitable for assessing the methane component of greenhouse gas emission and the energy potential from anaerobic digestion of volatile solids in piggery effluent. The apparent overestimation of N and P excretion may result in conservative nutrient application rates to land and the over-prediction of the nitrous oxide component of greenhouse gas emissions.
Resumo:
Carbon and nitrogen loading to streams and rivers contributes to eutrophication as well as greenhouse gas (GHG) production in streams, rivers and estuaries. My dissertation consists of three research chapters, which examine interactions and potential trade-offs between water quality and greenhouse gas production in urban streams of the Chesapeake Bay watershed. My first research project focused on drivers of carbon export and quality in an urbanized river. I found that watershed carbon sources (soils and leaves) contributed more than in-stream production to overall carbon export, but that periods of high in-stream productivity were important over seasonal and daily timescales. My second research chapter examined the influence of urban storm-water and sanitary infrastructure on dissolved and gaseous carbon and nitrogen concentrations in headwater streams. Gases (CO2, CH4, and N2O) were consistently super-saturated throughout the course of a year. N2O concentrations in streams draining septic systems were within the high range of previously published values. Total dissolved nitrogen concentration was positively correlated with CO2 and N2O and negatively correlated with CH4. My third research chapter examined a long-term (15-year) record of GHG emissions from soils in rural forests, urban forest, and urban lawns in Baltimore, MD. CO2, CH4, and N2O emissions showed positive correlations with temperature at each site. Lawns were a net source of CH4 + N2O, whereas forests were net sinks. Gross CO2 fluxes were also highest in lawns, in part due to elevated growing-season temperatures. While land cover influences GHG emissions from soils, the overall role of land cover on this flux is very small (< 0.5%) compared with gases released from anthropogenic sources, according to a recent GHG budget of the Baltimore metropolitan area, where this study took place.
Resumo:
Nitrogen fertilizer inputs dominate the fertilizer budget of grain sorghum growers in northern Australia, so optimizing use efficiency and minimizing losses are a primary agronomic objective. We report results from three experiments in southern Queensland sown on contrasting soil types and with contrasting rotation histories in the 2012-2013 summer season. Experiments were designed to quantify the response of grain sorghum to rates of N fertilizer applied as urea. Labelled 15N fertilizer was applied in microplots to determine the fate of applied N, while nitrous oxide (N2O) emissions were continuously monitored at Kingaroy (grass or legume ley histories) and Kingsthorpe (continuous grain cropping). Nitrous oxide is a useful indicator of gaseous N losses. Crops at all sites responded strongly to fertilizer N applications, with yields of unfertilized treatments ranging from 17% to 52% of N-unlimited potential. Maximum yields ranged from 4500 (Kupunn) to 5450 (Kingaroy) and 8010 (Kingsthorpe) kg/ha. Agronomic efficiency (kg additional grain produced/kg fertilizer N applied) at the optimum N rate on the Vertosol sites was 23 (80 N, Kupunn) to 25 (160N, Kingsthorpe), but 40-42 on the Ferrosols at Kingaroy (70-100N). Cumulative N2O emissions ranged from 0.44% (Kingaroy legume) to 0.93% (Kingsthorpe) and 1.15% (Kingaroy grass) of the optimum fertilizer N rate at each site, with greatest emissions from the Vertosol at Kingsthorpe. The similarity in N2O emissions factors between Kingaroy and Kingsthorpe contrasted markedly with the recovery of applied fertilizer N in plant and soil. Apparent losses of fertilizer N ranged from 0-5% (Ferrosols at Kingaroy) to 40-48% (Vertosols at Kupunn and Kingsthorpe). The greater losses on the Vertosols were attributed to denitrification losses and illustrate the greater risks of N losses in these soils in wet seasonal conditions.
Resumo:
PigBal is a mass balance model that uses pig diet, digestibility and production data to predict the manure solids and nutrients produced by pig herds. It has been widely used for designing piggery effluent treatment systems and sustainable reuse areas at Australian piggeries. More recently, PigBal has also been used to estimate piggery volatile solids production for assessing greenhouse gas emissions for statutory reporting purposes by government, and for evaluating the energy potential from anaerobic digestion of pig effluent. This paper has compared PigBal predictions of manure total, volatile, and fixed solids, and nitrogen (N), phosphorus (P) and potassium (K), with manure production data generated in a replicated trial, which involved collecting manure from pigs housed in metabolic pens. Predictions of total, volatile, and fixed solids and K in the excreted manure were relatively good (combined diet R2 ≥ 0.79, modelling efficiency (EF) ≥ 0.70) whereas predictions of N and P, were generally less accurate (combined diet R2 0.56 and 0.66, EF 0.19 and -0.22, respectively). PigBal generally under-predicted lower N values while over-predicting higher values, and generally over-predicted manure P production for all diets. The most likely causes for this less accurate performance were ammonium-N volatilisation losses between manure excretion and sample analysis, and the inability of PigBal to account for higher rates of P uptake by pigs fed diets containing phytase. The outcomes of this research suggest that there is a need for further investigation and model development to enhance PigBal's capabilities for more accurately assessing nutrient loads. However, PigBal's satisfactory performance in predicting solids excretion demonstrates that it is suitable for assessing the methane component of greenhouse gas emission and the energy potential from anaerobic digestion of volatile solids in piggery effluent. The apparent overestimation of N and P excretion may result in conservative nutrient application rates to land and the over-prediction of the nitrous oxide component of greenhouse gas emissions. © CSIRO 2016.
Resumo:
Dairy cattle farms have a well-known environmental impact that affects all ecological compartments: air, soil, water and biosphere [1]. Dairy cattle farming are a significant source of anthropogenic gases from enteric fermentation, manure storage and land application, mainly ammonia (NH3), nitric oxide (NO), nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4). The emission of such gases represents not only an environmental problem but also leads to energy and nitrogen (N) losses in ruminant production systems [2-5]. Several efforts are required on the development of new technologies and strategies that mitigate gaseous emissions, N losses and improve the efficiency of the energy and N cycles [6, 7]. In the Northwest of Portugal, dairy cattle production has a major impact on the economy, with strong repercussions at national scale. Therefore, our Ph.D. thesis project aims to: a) Study natural supplements as additives in the dairy cattle diet towards a decrease in GHG emissions from feeding operations; b) Compare commercial dairy cattle diets with and without additives on gaseous emissions from manure deposited in a simulated concrete floor; c) Assess the concentrations and emissions of NH3 and greenhouse gases from commercial dairy cattle facilities; d) Evaluate the effects of different additives on lowering gaseous emissions from dairy cattle excreta, using a laboratory system simulating a dairy house concrete floor.
Resumo:
Carbon sequestration in agricultural, forest, and grassland soils has been promoted as a means by which substantial amounts of CO2 may be removed from the atmosphere, but few studies have evaluated the associated impacts on changes in soil N or net global warming potential (GWP). The purpose of this research was to ( 1) review the literature to examine how changes in grassland management that affect soil C also impact soil N, ( 2) assess the impact of different types of grassland management on changes in soil N and rates of change, and (3) evaluate changes in N2O fluxes from differently managed grassland ecosystems to assess net impacts on GWP. Soil C and N stocks either both increased or both decreased for most studies. Soil C and N sequestration were tightly linked, resulting in little change in C: N ratios with changes in management. Within grazing treatments N2O made a minor contribution to GWP (0.1-4%), but increases in N2O fluxes offset significant portions of C sequestration gains due to fertilization (10-125%) and conversion (average = 27%). Results from this work demonstrate that even when improved management practices result in considerable rates of C and N sequestration, changes in N2O fluxes can offset a substantial portion of gains by C sequestration. Even for cases in which C sequestration rates are not entirely offset by increases in N2O fluxes, small increases in N2O fluxes can substantially reduce C sequestration benefits. Conversely, reduction of N2O fluxes in grassland soils brought about by changes in management represents an opportunity to reduce the contribution of grasslands to net greenhouse gas forcing.
Resumo:
Infrared spectra are reported of methyl formate and formaldehyde adsorbed at 300 K on silica, Cu/SiO2 reduced in hydrogen and Cu/SiO2 which had been oxidised by exposure to nitrous oxide after reduction. Silanol groups on silica form hydrogen bonds with carbonyl groups in weakly adsorbed methyl formate molecules. Methyl formate ligates via its carbonyl groups to Cu atoms in the surface of reduced copper. A low residual concentration of surface oxygen on copper promoted the slow reaction of ligated methyl formate to give a bridging formate species on copper and adsorbed methoxy groups. Methyl formate did not ligate to an oxidised copper surface but was rapidly chemisorbed to give unidentate formate and methoxy species. Formaldehyde slowly polymerises on silica to form trioxane and other oxymethylene species. The reaction is faster over Cu/SiO2 which, in the reduced state, also catalyses the formation of bridging formate anions adsorbed on copper. The reaction between formaldehyde and oxidised Cu/SiO2 leads to both unidentate and bidentate formate and adsorbed water.
Resumo:
Infrared spectra are reported of formic acid adsorbed at 300 K on a reduced copper catalyst (Cu/SiO2) and a copper surface which had been oxidised by exposure to nitrous oxide. Formic acid was weakly adsorbed on the silica support. Ligation of formic acid to the copper surface occurred only on the reduced catalyst. Dissociative adsorption resulted in the formation of unidentate formate on the oxidised catalyst. The presence of reduced copper metal instigated a rapid reorientation to a bidentate formate species.
Resumo:
Infrared spectra are reported of methanol adsorbed at 295 K on reduced Cu/SiO2 and on Cu/SiO2 which had been preoxidised by exposure to excess nitrous oxide. Methanol was chemisorbed on reduced Cu/SiO2 to give methoxy species on both silica and copper, gave a trace of formate on copper via reaction with residual surface oxygen, and was weakly adsorbed at SiOH sites on the silica support. Heating the adsorbed species at 393 K led to the loss of methoxy groups on copper and the concomitant formation of a bidentate surface formate. Heating reduced Cu/SiO2 in methanol at 538 K initially gave both gaseous and adsorbed (on Cu) methyl formate which subsequently decomposed to CO and hydrogen. The reactions of methanol with oxidised Cu/SiO2 were similar to those for the reduced catalyst although surface oxygen promoted the formation of surface methoxy groups on copper. Subsequent heating at 393 K led first to unidentate formate before the appearance of bidentate formate.