987 resultados para NITROGEN UPTAKE
Resumo:
Sorghum (Sorghum bicolor L.) plants were grown in split pots in three Rothamsted soils with different soil pH values and phosphorus (P) contents. Ammonium addition resulted in higher plant dry weight and P content than comparable nitrate treatments. The pH of soils in the rhizosphere (0.51-mm average thickness) differed from the bulk soil depending on nitrogen (N) form and level. Ammonium application resulted in a pH decrease, but nitrate application slightly increased pH. To examine the effect of rhizosphere acidification on mobilization of phosphate, 0.5 M NaHCO3 extractable phosphate was measured. The lowering rhizosphere pH enhanced the solubility of P in the soil and maybe availability of P to plants. Rhizosphere-P depletion increased with increasing ammonium supply, but when N was supplied as nitrate, P depletion was not related to increasing nitrate supply. Low P status Hoosfield soils developed mycorrhizal infection., and as a result, P inflow was increased. Geescroft soil, which initially had a high P status, did not develop mycorrhizal infection, and P inflow was much smaller and was unaffected by N treatments. Therefore, plant growth and P uptake were influenced by both rhizosphere pH and indigenous mycorrhizal infection.
Resumo:
Sorghum (Sorghum bicolor) was grown for 40 days in. rhizocylinder (a growth container which permitted access to rh zosphere and nonrhizosphere soil), in two soils of low P status. Soils were fertilized with different rates of ammonium and nitrate and supplemented with 40 mg phosphorus (P) kg(-1) and inoculated with either Glomus mosseae (Nicol. and Gerd.) or nonmycorrhizal root inoculum.. N-serve (2 mg kg(-1)) was added to prevent nitrification. At harvest, soil from around the roots was collected at distances of 0-5, 5-10, and 10-20 mm from the root core which was 35 mm diameter. Sorghum plants, with and without mycorrhiza, grew larger with NH4+ than with NO3- application. After measuring soil pH, 4 3 suspensions of the same sample were titrated against 0.01 M HCl or 0.01 M NaOH until soil pH reached the nonplanted pH level. The acid or base requirement for each sample was calculated as mmol H+ or OFF kg(-1) soil. The magnitude of liberated acid or base depended on the form and rate of nitrogen and soil type. When the plant root was either uninfected or infected with mycorrhiza., soil pH changes extended up to 5 mm from the root core surface. In both soils, ammonium as an N source resulted in lower soil pH than nitrate. Mycorrhizal (VAM) inoculation did not enhance this difference. In mycorrhizal inoculated soil, P depletion extended tip to 20 mm from the root surface. In non-VAM inoculated soil P depletion extended up to 10 mm from the root surface and remained unchanged at greater distances. In the mycorrhizal inoculated soils, the contribution of the 0-5 mm soil zone to P uptake was greater than the core soil, which reflects the hyphal contribution to P supply. Nitrogen (N) applications that caused acidification increased P uptake because of increased demand; there is no direct evidence that the increased uptake was due to acidity increasing the solubility of P although this may have been a minor effect.
Resumo:
The impacts of afforestation at Plynlimon in the Severn catchment, mid-Wales. and in the Bedford Ouse catchment in south-east England are evaluated using the INCA model to simulate Nitrogen (N) fluxes and concentrations. The INCA model represents the key hydrological and N processes operating in catchments and simulates the daily dynamic behaviour as well as the annual fluxes. INCA has been applied to five years of data front the Hafren and Hore headwater sub-catchments (6.8 km(2) area in total) of the River Severn at Plytilimon and the model was calibrated and validated against field data. Simulation of afforestation is achieved by altering the uptake rate parameters in the model. INCA simulates the daily N behaviour in the catchments with good accuracy as well as reconstructing the annual budgets for N release following clearfelling a four-fold increase in N fluxes was followed by a slow recovery after re-afforestation. For comparison, INCA has been applied to the large (8380 km(2)) Bedford Ouse catchment to investigate the impact of replacing 20% arable land with forestry. The reduction in fertiliser inputs from arable farming and the N uptake by the forest are predicted to reduce the N flux reaching the main river system, leading to a 33% reduction in N-Nitrate concentrations in the river water.
Resumo:
The aim of this work was to couple a nitrogen (N) sub-model to already existent hydrological lumped (LU4-N) and semi-distributed (LU4-R-N and SD4-R-N) conceptual models, to improve our understanding of the factors and processes controlling nitrogen cycling and losses in Mediterranean catchments. The N model adopted provides a simplified conceptualization of the soil nitrogen cycle considering mineralization, nitrification, immobilization, denitrification, plant uptake, and ammonium adsorption/desorption. It also includes nitrification and denitrification in the shallow perched aquifer. We included a soil moisture threshold for all the considered soil biological processes. The results suggested that all the nitrogen processes were highly influenced by the rain episodes and that soil microbial processes occurred in pulses stimulated by soil moisture increasing after rain. Our simulation highlighted the riparian zone as a possible source of nitrate, especially after the summer drought period, but it can also act as an important sink of nitrate due to denitrification, in particular during the wettest period of the year. The riparian zone was a key element to simulate the catchment nitrate behaviour. The lumped LU4-N model (which does not include the riparian zone) could not be validated, while both the semi-distributed LU4-R-N and SD4-R-N model (which include the riparian zone) gave satisfactory results for the calibration process and acceptable results for the temporal validation process.
Resumo:
Preface. Iron is considered to be a minor element employed, in a variety of forms, by nearly all living organisms. In some cases, it is utilised in large quantities, for instance for the formation of magnetosomes within magnetotactic bacteria or during use of iron as a respiratory donor or acceptor by iron oxidising or reducing bacteria. However, in most cases the role of iron is restricted to its use as a cofactor or prosthetic group assisting the biological activity of many different types of protein. The key metabolic processes that are dependent on iron as a cofactor are numerous; they include respiration, light harvesting, nitrogen fixation, the Krebs cycle, redox stress resistance, amino acid synthesis and oxygen transport. Indeed, it is clear that Life in its current form would be impossible in the absence of iron. One of the main reasons for the reliance of Life upon this metal is the ability of iron to exist in multiple redox states, in particular the relatively stable ferrous (Fe2+) and ferric (Fe3+) forms. The availability of these stable oxidation states allows iron to engage in redox reactions over a wide range of midpoint potentials, depending on the coordination environment, making it an extremely adaptable mediator of electron exchange processes. Iron is also one of the most common elements within the Earth’s crust (5% abundance) and thus is considered to have been readily available when Life evolved on our early, anaerobic planet. However, as oxygen accumulated (the ‘Great oxidation event’) within the atmosphere some 2.4 billion years ago, and as the oceans became less acidic, the iron within primordial oceans was converted from its soluble reduced form to its weakly-soluble oxidised ferric form, which precipitated (~1.8 billion years ago) to form the ‘banded iron formations’ (BIFs) observed today in Precambrian sedimentary rocks around the world. These BIFs provide a geological record marking a transition point away from the ancient anaerobic world towards modern aerobic Earth. They also indicate a period over which the bio-availability of iron shifted from abundance to limitation, a condition that extends to the modern day. Thus, it is considered likely that the vast majority of extant organisms face the common problem of securing sufficient iron from their environment – a problem that Life on Earth has had to cope with for some 2 billion years. This struggle for iron is exemplified by the competition for this metal amongst co-habiting microorganisms who resort to stealing (pirating) each others iron supplies! The reliance of micro-organisms upon iron can be disadvantageous to them, and to our innate immune system it represents a chink in the microbial armour, offering an opportunity that can be exploited to ward off pathogenic invaders. In order to infect body tissues and cause disease, pathogens must secure all their iron from the host. To fight such infections, the host specifically withdraws available iron through the action of various iron depleting processes (e.g. the release of lactoferrin and lipocalin-2) – this represents an important strategy in our defence against disease. However, pathogens are frequently able to deploy iron acquisition systems that target host iron sources such as transferrin, lactoferrin and hemoproteins, and thus counteract the iron-withdrawal approaches of the host. Inactivation of such host-targeting iron-uptake systems often attenuates the pathogenicity of the invading microbe, illustrating the importance of ‘the battle for iron’ in the infection process. The role of iron sequestration systems in facilitating microbial infections has been a major driving force in research aimed at unravelling the complexities of microbial iron transport processes. But also, the intricacy of such systems offers a challenge that stimulates the curiosity. One such challenge is to understand how balanced levels of free iron within the cytosol are achieved in a way that avoids toxicity whilst providing sufficient levels for metabolic purposes – this is a requirement that all organisms have to meet. Although the systems involved in achieving this balance can be highly variable amongst different microorganisms, the overall strategy is common. On a coarse level, the homeostatic control of cellular iron is maintained through strict control of the uptake, storage and utilisation of available iron, and is co-ordinated by integrated iron-regulatory networks. However, much yet remains to be discovered concerning the fine details of these different iron regulatory processes. As already indicated, perhaps the most difficult task in maintaining iron homeostasis is simply the procurement of sufficient iron from external sources. The importance of this problem is demonstrated by the plethora of distinct iron transporters often found within a single bacterium, each targeting different forms (complex or redox state) of iron or a different environmental condition. Thus, microbes devote considerable cellular resource to securing iron from their surroundings, reflecting how successful acquisition of iron can be crucial in the competition for survival. The aim of this book is provide the reader with an overview of iron transport processes within a range of microorganisms and to provide an indication of how microbial iron levels are controlled. This aim is promoted through the inclusion of expert reviews on several well studied examples that illustrate the current state of play concerning our comprehension of how iron is translocated into the bacterial (or fungal) cell and how iron homeostasis is controlled within microbes. The first two chapters (1-2) consider the general properties of microbial iron-chelating compounds (known as ‘siderophores’), and the mechanisms used by bacteria to acquire haem and utilise it as an iron source. The following twelve chapters (3-14) focus on specific types of microorganism that are of key interest, covering both an array of pathogens for humans, animals and plants (e.g. species of Bordetella, Shigella, , Erwinia, Vibrio, Aeromonas, Francisella, Campylobacter and Staphylococci, and EHEC) as well as a number of prominent non-pathogens (e.g. the rhizobia, E. coli K-12, Bacteroides spp., cyanobacteria, Bacillus spp. and yeasts). The chapters relay the common themes in microbial iron uptake approaches (e.g. the use of siderophores, TonB-dependent transporters, and ABC transport systems), but also highlight many distinctions (such as use of different types iron regulator and the impact of the presence/absence of a cell wall) in the strategies employed. We hope that those both within and outside the field will find this book useful, stimulating and interesting. We intend that it will provide a source for reference that will assist relevant researchers and provide an entry point for those initiating their studies within this subject. Finally, it is important that we acknowledge and thank wholeheartedly the many contributors who have provided the 14 excellent chapters from which this book is composed. Without their considerable efforts, this book, and the understanding that it relays, would not have been possible. Simon C Andrews and Pierre Cornelis
Resumo:
Four field experiments over 2 years investigated whether wheat hybrids had higher nitrogen-use efficiency (NUE) than their parents over a range of seed rates and different N regimes. There was little heterosis for total N in the above-ground biomass (NYt), but there was high-parent heterosis for grain N yields (NYg) in two of the hybrids, Hyno Esta and Hyno Rista, associated with greater nitrogen harvest index (NHI). Overall, the hybrids did not significantly increase the total dry matter produced per unit N in the above-ground crop (NUtE(t)), but did increase the grain dry matter per unit N in the above ground crop (NUtE(g)). The improvement in NUtE(g) was at the partial detriment of grain N concentration. Heterosis for grain NYg in Hyno Esta was lower at zero-N, suggesting that it did not achieve higher yields through more efficient capture or utilization of N. The greater NHI in Hyno Esta appeared to be facilitated by both greater N uptake, and remobilization of N from vegetative tissues, after anthesis. The response of N efficiency and uptake to seed rate was dependent on N supply and season. Where N fertilizer was applied, N uptake over time was slower at the lower seed rates, but where N was withheld N capture at the lowest seed rate soon approached the N capture of the higher seed rates. During grain filling, the rate of accumulation of N into the grain increased with seed rate and the duration of N accumulation decreased with seed rate. With N applied, N yields increased to all asymptote with seed rate, when N was withheld there was little response of N yields to seed rate. In 2002, N utilization efficiency (NUtE(t) and NUtE(g)) also increased asymptotically with seed rate, but in 2003 seed rate had little effect on N utilization efficiency. When nitrogen fertilizer had not been applied, NHI consistently decreased with increasing seed rate. The timing of N application made little difference to NUE, NY, or NUtE.
Resumo:
Effects of increased ammonia and/or arginine absorption across the portal-drained viscera (PDV) on net splanchnic (PDV and liver) metabolism of nitrogenous compounds and urinary N excretion were investigated in six cathetenzed Hereford x Angus steers (501 +/- 1 kg BW) fed a 75% alfalfa:25% (as-fed basis) corn-soybean meal diet (0.523 MJ of ME/[kg BW0.15.d]) every 2 h without (27.0 g of N/kg of dietary DM) and with 20 g of urea/kg of dietary DM (35.7 g of N/kg of dietary DM) in a split-plot design. Net splanchnic flux measurements were obtained immediately before beginning and ending a 72-h mesenteric vein infusion of L-arginine (15 mmol/h). For 3 d before and during arginine infusion, daily urine voided was measured and analyzed for N composition. Feeding urea increased PDV absorption (P < 0.01) and hepatic removal (P < 0.01) of ammonia N, accounting for 80% of increased hepatic urea N output (P < 0.01). Numerical increases in net hepatic removal of AA N could account for the remaining portion of increased hepatic urea N output. Arginine infusion increased hepatic arginine removal (P < 0.01) and hepatic urea N output (P < 0.03) and switched hepatic ornithine flux from net uptake to net output (P < 0.01), but numerical changes in net hepatic removal of ammonia and AA N could not account fully for the increase in hepatic urea N output. Increases in urine N excretion equaled quantities of N fed as urea or infused as arginine. Estimated salivary urea N excretion was not changed by either treatment. Urea cycle regulation occurs via a complex interaction of mechanisms and requires N sources other than ammonia, but the effect of increased ammonia absorption on hepatic catabolism of individual AA in the present study was not significant.
Resumo:
Whilst much is known of new technology adopters, little research has addressed the role of their attitudes in adoption decisions; particularly, for technologies with evident economic potential that have not been taken up by farmers. This paper presents recent research that has used a new approach which examines the role that adopters' attitudes play in identifying the drivers of and barriers to adoption. The study was concerned with technologies for livestock farming systems in SW England, specifically oestrus detection, nitrogen supply management, and, inclusion of white clover. The adoption behaviour is analysed using the social-psychology theory of reasoned action to identify factors that affect the adoption of technologies, which are confirmed using principal components analysis. The results presented here relate to the specific adoption behaviour regarding the Milk Development Council's recommended observation times for heat detection. The factors that affect the adoption of this technology are: cost effectiveness, improved detection and conception rates as the main drivers, whilst the threat to demean the personal knowledge and skills of a farmer in 'knowing' their cows is a barrier. This research shows clearly that promotion of a technology and transfer of knowledge for a farming system need to take account of the beliefs and attitudes of potential adopters. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A field plot experiment was set up on a sandy loam soil of SW England in order to determine the efficiency of nitrogen use from different cattle manures. The manure treatments were low and high dry matter cattle slurries and one farmyard manure applied at a target rate of 200 kg total Nha(-1) year(-1), and an untreated control. There were three different cropping systems: ryegrass/clover mixture, maize/rye and maize/bare soil, which were evaluated during 1998/99 and 1999/00. Measurements were made of N losses, N uptake and herbage DM yields. Result showed that manure type had a significant effect on N utilisation only for maize. N balances were negative in maize (approximately -247 to -10 kg N) compared to grass (approximately 5-158 kg N). Agronomic management was more important than manure type in influencing N losses, where soil cultivation appeared to be a key factor when comparing maize and grass systems. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The novel dioxatetraaza macrocycle [26]phen(2)N(4)O(2), which incorporates two phenanthroline units, has been synthesized, and its acid-base behavior has been evaluated by potentiometric and H-1 NMR methods. Six protonation constants were determined, and the protonation sequence was established by NMR. The location of the fifth proton on the phen nitrogen was confirmed by X-ray determinations of the crystal structures of the receptor as bromide and chloride salts. The two compounds have the general molecular formula {(H-5[26]phen(2)N(4)O(2))X-n(H2O)(5-n)}X(n-1)(.)mH(2)O, where X = Cl, n = 3, and m = 6 or X = Br, n = 4, and m = 5.5. In the solid state, the (H-5[26]phen(2)N(4)O(2))(5+) cation adopts a "horseshoe" topology with sufficient room to encapsulate three or four halogen anions through the several N-(HX)-X-... hydrogen-bonding interactions. Two supermolecules {(H-5[26]phen(2)N(4)O(2))X-n(H2O)(5-n)}((5-n)+) form an interpenetrating dimeric species, which was also found by ESI mass spectrum. Binding studies of the protonated macrocycle with aliphatic (ox(2-), mal(2-), suc(2-), cit(3-), cta(3-)) and aromatic (bzc(-), naphc(-), anthc(-), pyrc(-), ph(2-), iph(2-), tph(2-), btc(3-)) anions were determined in water by potentiometric methods. These studies were complemented by H-1 NMR titrations in D2O of the receptor with selected anions. The H-i[26]phen(2)N(4)O(2)(i+) receptor can selectively uptake highly charged or extended aromatic carboxylate anions, such as btc(3-) and pyrc(-), in the pH ranges of 4.0-8.5 and < 4.0, respectively, from aqueous solution that contain the remaining anions as pollutants or contaminants. To obtain further insight into these structural and experimental findings, molecular dynamics (MD) simulations were carried out in water solution.
Resumo:
The efficiency of N utilization in ruminants is typically low (around 25%) and highly variable (10% to 40%) compared with the higher efficiency of other production animals. The low efficiency has implications for the production performance and environment. Many efforts have been devoted to improving the efficiency of N utilization in ruminants, and while major improvements in our understanding of N requirements and metabolism have been achieved, the overall efficiency remains low. In general, maximal efficiency of N utilization will only occur at the expense of some losses in production performance. However, optimal production and N utilization may be achieved through the understanding of the key mechanisms involved in the control of N metabolism. Key factors in the rumen include the efficiency of N capture in the rumen (grams of bacterial N per grams of rumen available N) and the modification of protein degradation. Traditionally, protein degradation has been modulated by modifying the feed (physical and chemical treatments). Modifying the rumen microflora involved in peptide degradation and amino acid deamination offers an alternative approach that needs to be addressed. Current evidence indicates that in typical feeding conditions there is limited net recycling of N into the rumen (blood urea-N uptake minus ammonia-N absorption), but understanding the factors controlling urea transport across the rumen wall may reverse the balance to take advantage of the recycling capabilities of ruminants. Finally, there is considerable metabolism of amino acids (AA) in the portal-drained viscera (PDV) and liver. However, most of this process occurs through the uptake of AA from the arterial blood and not during the ‘absorptive’ process. Therefore, AA are available to the peripheral circulation and to the mammary gland before being used by PDV and the liver. In these conditions, the mammary gland plays a key role in determining the efficiency of N utilization because the PDV and liver will use AA in excess of those required by the mammary gland. Protein synthesis in the mammary gland appears to be tightly regulated by local and systemic signals. The understanding of factors regulating AA supply and absorption in the mammary gland, and the synthesis of milk protein should allow the formulation of diets that increase total AA uptake by the mammary gland and thus reduce AA utilization by PDV and the liver. A better understanding of these key processes should allow the development of strategies to improve the efficiency of N utilization in ruminants.
Resumo:
Two controlled microcosm experiments aimed at a critical re-assessment of the contributions of divergent arbuscular mycorrhizal (AM) fungi to plant mineral nutrition were established that specifically targeted Plantago lanceolata–Glomus intraradices (B.B/E) and –Gigaspora margarita (BEG 34) symbioses developed in a native, nutrient limited, coastal dune soil. Plant tissue nitrogen (N), phosphorus (P) and potassium (K) status as well as plant growth parameters and levels of mycorrhizal colonization were assessed at harvest. In addition to the general well-established mycorrhizal facilitation of P uptake, the study was able to demonstrate a G. intraradices-specific contribution to improved plant nitrogen and potassium nutrition. In the two respective experiments, G. intraradices-inoculated plants had 27.8% and 40.8% more total N and 55.8% and 23.3% more total K when compared to Gi. margarita inoculated counterparts. Dissimilar overall contribution of the two isolates to plant nutrition was identified in AM-genus specific differences in plant tissue N:P:K ratios. G. intraradices inoculated and non-mycorrhizal plants generally exhibited N:P:K ratios indicative of P limitation whereas for Gi.margarita mycorrhizal plants, corresponding ratios strongly implied either N or K limitation. The study provides further evidence highlighting AM functional biodiversity in respect to plant nutrient limitation experienced by mycorrhizal P. lanceolata in an ecologically relevant soil system.
Resumo:
Near isogenic lines (NILs) varying for alleles for reduced height (Rht) and photoperiod insensitivity (Ppd-D1a) in a cvar Mercia background (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c+Ppd-D1a, Rht-D1c, Rht12) were compared at a field site in Berkshire, UK, but within different systems (‘organic’, O, in 2005/06, 2006/07 and 2007/08 growing seasons v. ‘conventional’, C, in 2005/06, 2006/07, 2007/08 and 2008/09). In 2007 and 2008, further NILs (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht-B1b+Rht-D1b, Rht-D1b+Rht-B1c) in both Maris Huntsman and Maris Widgeon backgrounds were added. The contrasting systems allowed NILs to be tested in diverse rotational and agronomic, but commercially relevant, contexts, particularly with regard to the assumed temporal distribution of nitrogen availability, and competition from weeds. For grain, nitrogen-use efficiency (NUE; grain dry matter (DM) yield/available N; where available N=fertilizer N+soil mineral N), recovery of N in the grain (grain N yield/available N), N utilization efficiency to produce grain (NUtEg; grain DM yield/above-ground crop N yield), N harvest index (grain N yield/above-ground crop N yield) and dry matter harvest index (DMHI; grain DM yield/above-ground crop DM yield) all peaked at final crop heights of 800–950 mm. Maximum NUE occurred at greater crop heights in the organic system than in the conventional system, such that even adding just a semi-dwarfing allele (Rht-D1b) to the shortest background, Mercia, reduced NUE in the organic system. The mechanism of dwarfing (gibberellin sensitive or insensitive) made little difference to the relationship between NUE and its components with crop height. For above-ground biomass: dwarfing alleles had a greater effect on DM accumulation compared with N accumulation such that all dwarfing alleles could reduce nitrogen utilization efficiency (NUtE; crop DM yield/crop N yield). This was particularly evident at anthesis in the conventional system when there was no significant penalty for severe dwarfism for N accumulation, despite a 3-tonne (t)/ha reduction in biomass compared to the tallest lines. Differences between genotypes for recovery of N in the grain were thus mostly a function of net N uptake after anthesis rather than of remobilized N. This effect was compounded as dwarfing, except when coupled with Ppd-D1a, was associated with delayed anthesis. In the organic experiments there was greater reliance on N accumulated before anthesis, and genotype effects on NUE were confounded with effects on N accumulated by weeds, which was negatively associated with crop height. Optimum height for maximizing wheat NUE and its components, as manipulated by Rht alleles, thus depend on growing system, and crop utilization (i.e. biomass or grain production).
An isotope dilution model for partitioning phenylalanine uptake by the liver of lactating dairy cows
Resumo:
An isotope dilution model for partitioning phenylalanine uptake by the liver of the lactating dairy cow was constructed and solved in the steady state. If assumptions are made, model solution permits calculation of the rate of phenylalanine uptake from portal vein and hepatic arterial blood supply, phenylalanine release into the hepatic vein, phenylalanine oxidation and synthesis, and degradation of hepatic constitutive and export proteins. The model requires the measurement of plasma fow rate through the liver in combination with phenylalanine concentrations and plateau isotopic enrichments in arterial, portal and hepatic plasma during a constant infusion of [1-13C]phenylalanine tracer. The model can be applied to other amino acids with similar metabolic fates and will provide a means for assessing the impact of hepatic metabolism on amino acid availability to peripheral tissues. This is of particular importance for the dairy cow when considering the requirements for milk protein synthesis and the negative environmental impact of excessive nitrogen excretion.
Resumo:
A UK field experiment compared a complete factorial combination of three backgrounds (cvs Mercia, Maris Huntsman and Maris Widgeon), three alleles at the Rht-B1 locus as Near Isogenic Lines (NILs: rht-B1a (tall), Rht-B1b (semi-dwarf), Rht-B1c (severe dwarf)) and four nitrogen (N) fertilizer application rates (0, 100, 200 and 350 kg N/ha). Linear+exponential functions were fitted to grain yield (GY) and nitrogen-use efficiency (NUE; GY/available N) responses to N rate. Averaged over N rate and background Rht-B1b conferred significantly (P<0.05) greater GY, NUE, N uptake efficiency (NUpE; N in above ground crop / available N) and N utilization efficiency (NUtEg; GY / N in above ground crop) compared with rht-B1a and Rht-B1c. However the economically optimal N rate (Nopt) for N:grain price ratios of 3.5:1 to 10:1 were also greater for Rht-B1b, and because NUE, NUpE and NUtE all declined with N rate, Rht-Blb failed to increase NUE or its components at Nopt. The adoption of semi-dwarf lines in temperate and humid regions, and the greater N rates that such adoption justifies economically, greatly increases land-use efficiency, but not necessarily, NUE.