986 resultados para N-methyl-D-aspartate (NMDA)-induced


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In cultured oligodendrocytes isolated from perinatal rat optic nerves, we have analyzed the expression of ionotropic glutamate receptor subunits as well as the effect of the activation of these receptors on oligodendrocyte viability. Reverse transcription–PCR, in combination with immunocytochemistry, demonstrated that most oligodendrocytes differentiated in vitro express the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluR3 and GluR4 and the kainate receptor subunits GluR6, GluR7, KA1 and KA2. Acute and chronic exposure to kainate caused extensive oligodendrocyte death in culture. This effect was partially prevented by the AMPA receptor antagonist GYKI 52466 and was completely abolished by the non-N-methyl-d-aspartate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), suggesting that both AMPA and kainate receptors mediate the observed kainate toxicity. Furthermore, chronic application of kainate to optic nerves in vivo resulted in massive oligodendrocyte death which, as in vitro, could be prevented by coinfusion of the toxin with CNQX. These findings suggest that excessive activation of the ionotropic glutamate receptors expressed by oligodendrocytes may act as a negative regulator of the size of this cell population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pregnenolone sulfate (PREG S) is synthesized in the nervous system and is a major neurosteroid in the rat brain. Its concentrations were measured in the hippocampus and other brain areas of single adult and aged (22–24 month-old) male Sprague–Dawley rats. Significantly lower levels were found in aged rats, although the values were widely scattered and reached, in about half the animals, the same range as those of young ones. The spatial memory performances of aged rats were investigated in two different spatial memory tasks, the Morris water maze and Y-maze. Performances in both tests were significantly correlated and, accompanied by appropriate controls, likely evaluated genuine memory function. Importantly, individual hippocampal PREG S and distance to reach the platform in the water maze were linked by a significant correlation, i.e., those rats with lower memory deficit had the highest PREG S levels, whereas no relationship was found with the PREG S content in other brain areas (amygdala, prefrontal cortex, parietal cortex, striatum). Moreover, the memory deficit of cognitively impaired aged rats was transiently corrected after either intraperitoneal or bilateral intrahippocampal injection of PREG S. PREG S is both a γ-aminobutyric acid antagonist and a positive allosteric modulator at the N-methyl-d-aspartate receptor, and may reinforce neurotransmitter system(s) that decline with age. Indeed, intracerebroventricular injection of PREG S was shown to stimulate acetylcholine release in the adult rat hippocampus. In conclusion, it is proposed that the hippocampal content of PREG S plays a physiological role in preserving and/or enhancing cognitive abilities in old animals, possibly via an interaction with central cholinergic systems. Thus, neurosteroids should be further studied in the context of prevention and/or treatment of age-related memory disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extracellular glutamate concentration ([glu]o) rises during cerebral ischemia, reaching levels capable of inducing delayed neuronal death. The mechanisms underlying this glutamate accumulation remain controversial. We used N-methyl-d-aspartate receptors on CA3 pyramidal neurons as a real-time, on-site, glutamate sensor to identify the source of glutamate release in an in vitro model of ischemia. Using glutamate and l-trans-pyrrolidine-2,4-dicarboxylic acid (tPDC) as substrates and dl-threo-β-benzyloxyaspartate (TBOA) as an inhibitor of glutamate transporters, we demonstrate that energy deprivation decreases net glutamate uptake within 2–3 min and later promotes reverse glutamate transport. This process accounts for up to 50% of the glutamate accumulation during energy deprivation. Enhanced action potential-independent vesicular release also contributes to the increase in [glu]o, by ≈50%, but only once glutamate uptake is inhibited. These results indicate that a significant rise in [glu]o already occurs during the first minutes of energy deprivation and is the consequence of reduced uptake and increased vesicular and nonvesicular release of glutamate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-term potentiation (LTP) is an increase in synaptic responsiveness thought to be involved in mammalian learning and memory. The localization (presynaptic and/or postsynaptic) of changes underlying LTP has been difficult to resolve with current electrophysiological techniques. Using a biochemical approach, we have addressed this issue and attempted to identify specific molecular mechanisms that may underlie LTP. We utilized a novel multiple-electrode stimulator to produce LTP in a substantial portion of the synapses in a hippocampal CA1 minislice and tested the effects of such stimulation on the presynaptic protein synapsin I. LTP-inducing stimulation produced a long-lasting 6-fold increase in the phosphorylation of synapsin I at its Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) sites without affecting synapsin I levels. This effect was fully blocked by either the N-methyl-d-aspartate receptor antagonist d(−)-2-amino-5-phosphonopentanoic acid (APV) or the CaM kinase II inhibitor KN-62. Our results indicate that LTP expression is accompanied by persistent changes in presynaptic phosphorylation, and specifically that presynaptic CaM kinase II activity and synapsin I phosphorylation may be involved in LTP expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms underlying neuronal ischemic preconditioning, a phenomenon in which brief episodes of ischemia protect against the lethal effects of subsequent periods of prolonged ischemia, are poorly understood. Ischemia can be modeled in vitro by oxygen-glucose deprivation (OGD). We report here that OGD preconditioning induces p21ras (Ras) activation in an N-methyl-d-aspartate receptor- and NO-dependent, but cGMP-independent, manner. We demonstrate that Ras activity is necessary and sufficient for OGD tolerance in neurons. Pharmacological inhibition of Ras, as well as a dominant negative mutant Ras, block OGD preconditioning whereas a constitutively active form of Ras promotes neuroprotection against lethal OGD insults. In contrast, the activity of phosphatidyl inositol 3-kinase is not required for OGD preconditioning because inhibition of phosphatidyl inositol 3-kinase with a chemical inhibitor or with a dominant negative mutant does not have any effect on the development of OGD tolerance. Furthermore, using recombinant adenoviruses and pharmacological inhibitors, we show that downstream of Ras the extracellular regulated kinase cascade is required for OGD preconditioning. Our observations indicate that activation of the Ras/extracellular regulated kinase cascade by NO is a critical mechanism for the development of OGD tolerance in cortical neurons, which may also play an important role in ischemic preconditioning in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuronal synchronization in the olfactory bulb has been proposed to arise from a diffuse action of glutamate released from mitral cells (MC, olfactory bulb relay neurons). According to this hypothesis, glutamate spills over from dendrodendritic synapses formed between MC and granule cells (GC, olfactory bulb interneurons) to activate neighboring MC. The excitation of MC is balanced by a strong inhibition from GC. Here we show that MC excitation is caused by glutamate released from bulbar interneurons located in the GC layer. These reciprocal synapses depend on an unusual, 2-amino-5-phosphonovaleric acid-resistant, N-methyl-d-aspartate receptor. This type of feedback excitation onto relay neurons may strengthen the original sensory input signal and further extend the function of the dendritic microcircuit within the main olfactory bulb.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A specific set of molecules including glutamate receptors is targeted to the postsynaptic specialization of excitatory synapses in the brain, gathering in a structure known as the postsynaptic density (PSD). Synaptic targeting of glutamate receptors depends on interactions between the C-terminal tails of receptor subunits and specific PDZ domain-containing scaffold proteins in the PSD. These scaffold proteins assemble a specialized protein complex around each class of glutamate receptor that functions in signal transduction, cytoskeletal anchoring, and trafficking of the receptors. Among the glutamate receptor subtypes, the N-methyl-d-aspartate receptor is relatively stably integrated in the PSD, whereas the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor moves in and out of the postsynaptic membrane in highly dynamic fashion. The distinctive cell biological behaviors of N-methyl-d-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors can be explained by their differential interactions with cytoplasmic proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neurotrophins can directly modulate the function of diverse types of central nervous system synapses. Brain-derived neurotrophic factor (BDNF) might be released by nociceptors onto spinal neurons and mediate central sensitization associated with chronic pain. We have studied the role of BDNF and neurotrophin-4 (NT-4), both ligands of the trkB tyrosine kinase receptor, in synaptic transmission and reflex plasticity in the mouse spinal cord. We used an in vitro spinal cord preparation to measure monosynaptic and polysynaptic reflexes evoked by primary afferents in BDNF- and NT-4-deficient mice. In situ hybridization studies show that both these neurotrophins are synthesized by sensory neurons, and NT-4, but not BDNF, also is expressed by spinal neurons. BDNF null mutants display selective deficits in the ventral root potential (VRP) evoked by stimulating nociceptive primary afferents whereas the non-nociceptive portion of the VRP remained unaltered. In addition, activity-dependent plasticity of the VRP evoked by repetitive (1 Hz) stimulation of nociceptive primary afferents (termed wind-up) was substantially reduced in BDNF-deficient mice. This plasticity also was reduced in a reversible manner by the protein kinase inhibitor K252a. Although the trkB ligand NT-4 is normally present, reflex properties in NT-4 null mutant mice were normal. Pharmacological studies also indicated that spinal N-methyl-d-aspartate receptor function was unaltered in BDNF-deficient mice. Using immunocytochemistry for markers of nociceptive neurons we found no evidence that their number or connectivity was substantially altered in BDNF-deficient mice. Our data therefore are consistent with a direct role for presynaptic BDNF release from sensory neurons in the modulation of pain-related neurotransmission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Classical conditioning of Aplysia's siphon-withdrawal reflex is thought to be due to a presynaptic mechanism-activity-dependent presynaptic facilitation of sensorimotor connections. Recent experiments with sensorimotor synapses in dissociated cell culture, however, provide an alternative cellular mechanism for classical conditioning-Hebbian long-term potentiation (LTP) of sensorimotor connections. Induction of Hebbian LTP of these connections is mediated by activation of N-methyl-D-aspartate-related receptors and requires the postsynaptic elevation of intracellular Ca2+. To determine whether the enhancement of sensorimotor synapses during classical conditioning in Aplysia-like LTP of sensorimotor synapses in culture-also depends upon the elevation of postsynaptic Ca2+, we carried out experiments involving the cellular analog of classical conditioning of siphon withdrawal. We examined changes in the strength of monosynaptic siphon sensorimotor connections in the abdominal ganglion of Aplysia following paired presentations of sensory neuron activation and tail nerve shock. This training regimen resulted in significant enhancement of the monosynaptic sensorimotor excitatory postsynaptic potential, as compared with the sensorimotor excitatory postsynaptic potential in preparations that received only test stimulation. Infusing the motor neuron with 1,2-bis(2-aminophenoxy)ethane-N,N-N',N'-tetraacetic acid, a specific chelator of intracellular Ca2+, prior to paired stimulation training blocked this synaptic enhancement. Our results implicate a postsynaptic, possibly Hebbian, mechanism in classical conditioning in Aplysia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synapses of the hippocampal mossy fiber pathway exhibit several characteristic features, including a unique form of long-term potentiation that does not require activation of the N-methyl-D-aspartate receptor by glutamate, a complex postsynaptic architecture, and sprouting in response to seizures. However, these connections have proven difficult to study in hippocampal slices because of their relative paucity (<0.4%) compared to commissural-collateral synapses. To overcome this problem, we have developed a novel dissociated cell culture system in which we have enriched mossy fiber synapses by increasing the ratio of granule-to-pyramidal cells. As in vivo, mossy fiber connections are composed of large dynorphin A-positive varicosities contacting complex spines (but without a restricted localization). The elementary synaptic connections are glutamatergic, inhibited by dynorphin A, and exhibit N-methyl-D-aspartate-independent long-term potentiation. Thus, the simplicity and experimental accessibility of this enriched in vitro mossy fiber pathway provides a new perspective for studying nonassociative plasticity in the mammalian central nervous system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complex circuitry of the CA3 region and the abundance of collateral connections has made it difficult to study the mossy fiber pathway in hippocampal slices and therefore to establish the site of expression of long-term potentiation at these synapses. Using a novel cell culture system, we have produced long-term potentiation of the elementary synaptic connections on single CA3 pyramidal neurons following tetanic stimulation of individual dentate gyrus granule cells. As is the case for the hippocampal slice, this potentiation was independent of N-methyl-D-aspartate receptor activation, was simulated by application of forskolin, and its induction did not require any modulatory input. The increase in synaptic strength was accompanied by a reduction in the number of failures of transmission and by an increase in the coefficient of variation of the responses and was prevented by presynaptic injection of an inhibitor of protein kinase A. These findings show that mossy fiber long-term potentiation has a presynaptic locus and that its expression is dependent on protein kinase A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Only three isoforms of adenylyl cyclase (EC 4.6.1.1) mRNAs (AC1, -2, and -5) are expressed at high levels in rat brain. AC1 occurs predominantly in hippocampus and cerebellum, AC5 is restricted to the basal ganglia, whereas AC2 is more widely expressed, but at much lower levels. The distribution and abundance of adenylyl cyclase protein were examined by immunohistochemistry with an antiserum that recognizes a peptide sequence shared by all known mammalian adenylyl cyclase isoforms. The immunoreactivity in striatum and hippocampus could be readily interpreted within the context of previous in situ hybridization studies. However, extending the information that could be gathered by comparisons with in situ hybridization analysis, it was apparent that staining was confined to the neuropil--corresponding to immunoreactive dendrites and axon terminals. Electron microscopy indicated a remarkably selective subcellular distribution of adenylyl cyclase protein. In the CA1 area of the hippocampus, the densest immunoreactivity was seen in postsynaptic densities in dendritic spine heads. Labeled presynaptic axon terminals were also observed, indicating the participation of adenylyl cyclase in the regulation of neurotransmitter release. The selective concentration of adenylyl cyclases at synaptic sites provides morphological data for understanding the pre- and postsynaptic roles of adenylyl cyclase in discrete neuronal circuits in rat brain. The apparent clustering of adenylyl cyclases, coupled with other data that suggest higher-order associations of regulatory elements including G proteins, N-methyl-D-aspartate receptors, and cAMP-dependent protein kinases, suggests not only that the primary structural information has been encoded to render the cAMP system responsive to the Ca(2+)-signaling system but also that higher-order strictures are in place to ensure that Ca2+ signals are economically delivered and propagated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stimulation of muscarinic m1 or m3 receptors can, by generating diacylglycerol and activating protein kinase C, accelerate the breakdown of the amyloid precursor protein (APP) to form soluble, nonamyloidogenic derivatives (APPs), as previously shown. This relationship has been demonstrated in human glioma and neuroblastoma cells, as well as in transfected human embryonic kidney 293 cells and PC-12 cells. We now provide evidence that stimulation of metabotropic glutamate receptors (mGluRs), which also are coupled to phosphatidylinositol 4,5-bisphosphate hydrolysis, similarly accelerates processing of APP into nonamyloidogenic APPs. This process is demonstrated both in hippocampal neurons derived from fetal rats and in human embryonic kidney 293 cells transfected with cDNA expression constructs encoding the mGluR 1 alpha subtype. In hippocampal neurons, both an mGluR antagonist, L-(+)-2-amino-3-phosphonopropionic acid, and an inhibitor of protein kinase C, GF 109203X, blocked the APPs release evoked by glutamate receptor stimulation. Ionotropic glutamate agonists, N-methyl-D-aspartate or S(-)-5-fluorowillardiine, failed to affect APPs release. These data show that selective mGluR agonists that initiate signal-transduction events can regulate APP processing in bona fide primary neurons and transfected cells. As glutamatergic neurons in the cortex and hippocampus are damaged in Alzheimer disease, amyloid production in these regions may be enhanced by deficits in glutamatergic neurotransmission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the rat suprachiasmatic nucleus slice culture, circadian rhythms in the release of arginine vasopressin and vasoactive intestinal polypeptide were measured simultaneously and longitudinally. The phase relationship between the two peptide rhythms was relatively constant in the culture without a treatment of antimitotic drugs but became diverse by an introduction of antimitotics, which is generally used to reduce the number of glial cells. By monitoring the two rhythms continuously for 6 days, different periods were detected in culture with the antimitotic treatment. Furthermore, N-methyl-D-aspartate shifted the phase of the two peptide rhythms in the same culture differently. These results indicate that the arginine vasopressin and vasoactive intestinal polypeptide release are under control of different circadian oscillators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single channel recordings demonstrate that ion channels switch stochastically between an open and a closed pore conformation. In search of a structural explanation for this universal open/close behavior, we have uncovered a striking degree of amino acid homology across the pore-forming regions of voltage-gated K channels and glutamate receptors. This suggested that the pores of these otherwise unrelated classes of channels could be structurally conserved. Strong experimental evidence supports a hairpin structure for the pore-forming region of K channels. Consequently, we hypothesized the existence of a similar structure for the pore of glutamate receptors. In ligand-gated channels, the pore is formed by M2, the second of four putative transmembrane segments. A hairpin structure for M2 would affect the subsequent membrane topology, inverting the proposed orientation of the next segments, M3. We have tested this idea for the NR1 subunit of the N-methyl-D-aspartate receptor. Mutations that affected the glycosylation pattern of the NR1 subunit localize both extremes of the M3-M4 linker to the extracellular space. Whole cell currents and apparent agonist affinities were not affected by these mutations. Therefore it can be assumed that they represent the native transmembrane topology. The extracellular assignment of the M3-M4 linker challenged the current topology model by inverting M3. Taken together, the amino acid homology and the new topology suggest that the pore-forming M2 segment of glutamate receptors does not transverse the membrane but, rather, forms a hairpin structure, similar to that found in K channels.