829 resultados para Multi factor affine processes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The uniaxial tension experiments on glass-fiber-reinforced epoxy matrix composites reveal that the fragmentations of fibers display vertically aligned fracture, clustered fracture, coordinated fracture, and random fracture with the increase of inter-fiber spacing. The finite element analysis indicates that the fragmentations of fibers displaying different phenomena are due to the stress concentration as well as the inherent randomness of fiber defects, which is the dominant factor. The experimental results show that matrices adjacent to the fiber breakpoints all exhibit birefringent-whitening patterns for the composites with different interfacial adhesion strengths. The larger the extent of the interfacial debonding, the less the domain of the birefringent-whitening patterns. The numerical analysis indicates that the orientation of the matrix adjacent to a fiber breakpoint is caused by the interfacial shear stress, resulting in the birefringent-whitening patterns. The area of shear stress concentrations decides on the domain of the birefringent-whitening patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deformation mechanism or styrene/n-butyl acrylate copolymer latex films with fiber symmetric crystalline structure subjected to uniaxial stretching was studied using synchrotron small-angle X-ray scattering technique. The fibers were drawn at angles or 0, 35, and 55 degrees with respect to the Fiber axis. In all cases, the microscopic deformation within the crystallites was Found to deviate from affine deformation behavior with respect to the macroscopic deformation ratio. Moreover, the extent of this deviation is different in the three cases. This peculiar behavior can be attributed to the relative orientation of the (111) plane of the crystals, the plane of densest packing, with respect to the stretching direction in each case. When the stretching direction coincides with the crystallographic (111) plane, which is the case for stretching directions of 0 and 55 degrees with respect to the fiber axis, the microscopic deformation deviates less from affine behavior than when the stretching direction is arbitrarily oriented with respect to the crystallographic (111) plan.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-walled carbon nanotubes (MWCNTs) were efficiently synthesized by catalytic combustion of polypropylene (PP) using nickel compounds (such as Ni2O3, NiO, Ni(OH)(2) and NiCO3 (.) 2Ni(OH)(2)) as catalysts in the presence of organic-modified montmorillonite (OMMT) at 630-830 degrees C. Morphologies of the sample undergoing different combustion times were observed to investigate actual process producing MWCNTs by this method. The obtained MWCNTs were characterized by X-ray diffraction (XRD), transmission electron microscope and Raman spectroscopy. The yield of MWCNTs was affected by the composition of PP mixtures with OMMT and nickel compounds and the combustion temperature. The proton acidic sites from the degraded OMMT layers due to the Hoffman reaction of the modifiers at high temperature played an important role in the catalytic degradation of PP to supply carbon sources that are easy to be catalyzed by nickel catalyst for the growth of MWCNTs. The XRD measurements demonstrated that the nickel compounds were in situ reduced into the Ni(0) state with the aid of hydrogen gas and/or hydrocarbons in the degradation products of PP, and the Ni(O) was really the active site for the growth of MWCNTs. The combination of nickel compounds with OMMT was a key factor to efficiently synthesize MWCNTs via catalytic combustion of PP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The explicit expression between composition and mechanical properties of silicone rubber was derived from the physics of polymer elasticity, the implicit expression among material composition, reaction conditions and reaction efficiency was obtained from chemical thermodynamics and kinetics, and then an implicit multi-objective optimization model was constructed. Genetic algorithm was applied to optimize material composition and reaction conditions, and the finite element method of cross-linking reaction processes was used to solve multi-objective functions, on the basis of which a new optimization methodology of crosslinking reaction processes was established. Using this methodology, rubber materials can be designed according to pre-specified requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumor necrosis factor receptor-associated factor 6 (TRAF6), a key signaling adaptor molecule common to the TNFR superfamily and IL-IR/TLR family, is important not only for a diverse array of physiological processes functions of the TNFR superfamily, but also is involved in adaptive immunity and innate immunity. In this report, the first bivalve TRAF6 (named as CfTRAF6) gene is identified and characterized from Zhikong scallop Chlamys farreri. The full-length cDNA of CfTRAF6 is of 2510 bp, consisting of a 5'-terminal untranslated region (UTR) of 337 bp, a 3'-terminal UTR of 208 bp with a canonical polyadenylation signal sequence AATAAA and a poly (A) tail, and an open reading frame (ORF) encoding a polypeptide of 655 amino acids. The predicted amino acid sequence of CfTRAF6 comprises characteristic motifs of the TRAF proteins, including a Zinc finger of RING-type, two Zinc fingers of TRAF-type, a coiled-coil region, and a MATH (the meprin and TRAF homology) domain. The overall amino acid sequence identity between CfTRAF6 and other TRAF6s is 28-68%. Phylogenetic analyses of CfTRAF6 sequence with TRAF sequences from other organisms indicate that CfTRAF6 is a true TRAF6 orthologue. The mRNA expression of CfTRAF6 in various tissues is measured by Real-time RT-PCR. The mRNA transcripts are constitutively expressed in tissues of haemocyte, muscle, mantle, heart, gonad and gill, but the highest expression is observed in the gonad. The temporal expressions of CfTRAF6 mRNA in the mixed primary cultured haemocytes are recorded after treatment with 20 mu g mL(-1) and 0.5 mu g mL(-1) peptido-glycan (PGN). The expression level of CfTRAF mRNA is down-regulated from 1.5 h to 3 h after the treatment with 0.5 mu g mL(-1) PGN, and then recovers to the original level. While the expression of CfTRAF6 is obviously decreased after treatment with 20 mu g mL(-1) PGN, and reach the lowest point (only about 1/9 times to control) at 3 h. The result Suggests that CfTRAF6 can be greatly regulated by PGN and it may be involved in signal transduction and immune response of scallop. (C) 2008 Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[ 1] Intraseasonal variability of Indian Ocean sea surface temperature (SST) during boreal winter is investigated by analyzing available data and a suite of solutions to an ocean general circulation model for 1998 - 2004. This period covers the QuikSCAT and Tropical Rainfall Measuring Mission (TRMM) observations. Impacts of the 30 - 90 day and 10 - 30 day atmospheric intraseasonal oscillations (ISOs) are examined separately, with the former dominated by the Madden-Julian Oscillation (MJO) and the latter dominated by convectively coupled Rossby and Kelvin waves. The maximum variation of intraseasonal SST occurs at 10 degrees S - 2 degrees S in the wintertime Intertropical Convergence Zone (ITCZ), where the mixed layer is thin and intraseasonal wind speed reaches its maximum. The observed maximum warming ( cooling) averaged over ( 60 degrees E - 85 degrees E, 10 degrees S - 3 degrees S) is 1.13 degrees C ( - 0.97 degrees C) for the period of interest, with a standard deviation of 0.39 degrees C in winter. This SST change is forced predominantly by the MJO. While the MJO causes a basin-wide cooling ( warming) in the ITCZ region, submonthly ISOs cause a more complex SST structure that propagates southwestward in the western-central basin and southeastward in the eastern ocean. On both the MJO and submonthly timescales, winds are the deterministic factor for the SST variability. Short-wave radiation generally plays a secondary role, and effects of precipitation are negligible. The dominant role of winds results roughly equally from wind speed and stress forcing. Wind speed affects SST by altering turbulent heat fluxes and entrainment cooling. Wind stress affects SST via several local and remote oceanic processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The water-heat transfer process between land and atmosphere in Haibei alpine meadow area has been systematically observed. A multi-layer coupling model for land-atmosphere interaction was presented with special attention paid to the moisture transfer in leaf stomata under unsaturated condition. A profound investigation on the physical process of turbulent transfer inside the vegetation has been performed with a revised formula of water absorption for root system. The present model facilitates the study of vertically distributed physical variables in detail. Numerical simulation was conducted according to the transfer process of Kinesia humility meadow in the area of Haibei Alpine Meadow Ecosystem Station, CAS. The calculated results agree well with observation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the variations of solar activity, solar EUV and X-ray radiations change over different timescales (e.g., from solar cycle variation to solar flare burst). Since solar EUV and X-ray radiations are the primary energy sources for the ionosphere, theirs variations undoubtedly produce significant and complicated effects on the ionosphere. So the variations of solar activity significantly affect the ionosphere. It is essential for both ionospheric theory and applications to study solar activity effects on the ionosphere. The study about solar activity variations of the ionosphere is an important part of the ionospheric climatology. It can enhance the understanding for the basic processes in the ionosphere, ionospheric structure and its change, ionosphere/thermosphere coupling, and so on. As for applications, people need sufficient knowledges about solar activity variations of the ionosphere in order to improve ionospheric models so that more accurate forecast for the ionospheric environments can be made. Presently, the whole image about the modalities of ionospheric solar activity variations is still unknown, and related mechanisms still cannot be well understood. This paper is about the effects of the 11-year change in solar activity to the low- and mid-latitude ionosphere. We use multi-type ionospheric observations and model to investigate solar activity effects on the electron density and ionospheric spatial structure, and we focus on discussing some related mechanisms. The main works are as follows: Firstly, solar activity variations of ionospheric peak electron density (NmF2) around 1400 LT were investigated using ionosonde observations in the 120°E sector. The result shows that the variation trend of NmF2 with F107 depends on latitudes and seasons. There is obvious saturation trend in low latitudes in all seasons; while in middle latitudes, NmF2 increases linearly with F107 in winter but saturates with F107 at higher solar activity levels in the other seasons. We calculated the photochemical equilibrium electron density to discuss the effects induced by the changes of neutral atmosphere and dynamics processes on the solar activity variations of NmF2. We found that: (1) Seasonal variation of neutral atmosphere plays an important role in the seasonal difference of the solar activity variations of NmF2 in middle latitudes. (2) Less [O]/[N2] and higher neutral temperature are important for the saturation effect in summer, and the increase of vibrational excited N2 is also important for the saturation effect. (3) Dynamics processes can significantly weaken the increase of NmF2 when solar activity enhances, which is also a necessary factor for the saturation effect. Secondly, solar activity variations of nighttime NmF2 were investigated using ionosonde observations in the 120°E sector. The result shows that the variation trends of NmF2 with F107 in nighttime are different from that in daytime in some cases, and the nighttime variation trends depend on seasons. There is linear increase trend in equinox nighttime, and saturation trend in summer nighttime, while the increase rate of NmF2 with F107 increases when solar activity enhances in winter nighttime (we term it with “amplification trend”). We discussed the possible mechanisms which affect the solar activity variations of nighttime NmF2. The primary conclusions are as follows: (1) In the equatorial ionization anomaly (EIA) crest region, the plasma influx induced by the pre-reversal enhancement (PRE) results in the change of the variation trend between NmF2 and F107 from “saturation” to “linear” after sunset in equinoxes and winter; while the recombination process at the F2-peak is the primary factor that affects the variation trend of NmF2 with F107 in middle latitudes. (2) The recombination coefficient at the F2-peak height reaches its maximum at moderate solar activity level in winter nighttime, which induces NmF2 attenuates more quickly at moderate solar activity level. This is the main reason for the amplification trend. (3) The change of the recombination process at the F2-peak with solar activity depends on the increases of neutral parameters (temperature, density et al.) and the F2-peak height (hmF2). The seasonal differences in the changes of neutral atmosphere and hmF2 with solar activity are the primary reasons for the seasonal difference in the variation trend of nighttime NmF2 with F107. Finally, we investigated the solar activity dependence of the topside ionosphere in low latitudes using ROCSAT-1 satellite (at 600 km altitude) observations. The primary results and conclusions are as follows: (1) Latitudinal distribution of the plasma density is local time, seasonal, and solar activity dependent. In daytime, there is a plasma density peak at the dip equator. The peak is obviously enhanced at high solar activity level, and the strength of the peak strongly depends on seasons. While at sunset, two profound plasma density peaks (double-peak structure) are found in solar maximum equinox months. (2) Local time dependence of the latitudinal distribution is due to the local time variation of the equatorial dynamics processes. Double-peak structure is attributed to the fountain effect induced by strong PRE. Daytime peak enhances with solar activity since the plasma density increases with solar activity more strongly at the dip equator due to the equatorial vertical drift, and its seasonal dependence is mainly due to the seasonal variations of neutral density and the equatorial vertical drift. In the sunset sector, seasonal and solar activity dependences of the latitudinal distribution are related to the seasonal and solar activity variations of PRE. (3) The variation trend of the plasma density with solar activity shows local time, seasonal, and latitudinal differences. That is different from the changeless amplification trend at the DMSP altitude (840 km). Profound saturation effect is found in the dip equator region at equinox sunset. This saturation effect in the topside ionosphere is realated to the increase of PRE with solar activity. Solar activity variation trend of the topside plasma density was discussed quantitatively by Chapman-α function. The result shows that the effect induced by the change of the scale height is dominant at high altitudes; while the variation trend of ROCSAT-1 plasma density with solar activity is suggested to be related to the changes of the peak height, the scale height, and the peak electron density with solar activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

River is a major component of the global surface water and CO2 cycles. The chemistry of river waters reveals the nature of weathering on a basin-wide scale and helps us understand the exogenic cycles of elements in the continent-river-ocean system. In particular, geochemical investigation of large river gives important information on the biogeochemical cycles of the elements, chemical weathering rates, physical erosion rates and CO2 consumption during the weathering of the rocks within the drainage basin. Its importance has led to a number of detailed geochemical studies on some of the world's large and medium-size river systems. Flowing in the south of China, the Xijiang River is the second largest river in the China with respect to its discharge, after the Yangtze River. Its headwaters drain the YunGui Plateau, where altitude is approximately 2000 meters. Geologically, the carbonate rocks are widely spread in the river drainage basin, which covers an area of about 0.17xl06 km2, i.e., 39% of the whole drainage basin. This study focuses on the chemistry of the Xijiang river system and constitutes the first geochemical investigation into major and trace elements concentrations for both suspended and dissolved loads of this river and its main tributaries, and Sr isotopic composition of the dissolved load is also investigated, in order to determine both chemical weathering and mechanical erosion rates. As compared with the other large rivers of the world, the Xijiang River is characterized by higher major element concentration. The dissolved major cations average 1.17, 0.33, 0.15, and 0.04 mmol I"1 for Ca, Mg, Na, and K, respectively. The total cation concentrations (TZ+) in these rivers vary between 2.2 and 4.4 meq I'1. The high concentration of Ca and Mg, high (Ca+Mg)/(Na+K) ratio (7.9), enormous alkalinity and low dissolved SiO2/HCO3 ratio (0.05) in river waters reveal the importance of carbonate weathering and relatively weak silicate weathering over the river drainage basin. The major elements in river water, such as the alkalis and alkaline-earths, are of different origins: from rain water, silicate weathering, carbonate and evaporite weathering. A mixing model based on mass budget equation is used in this study, which allows the proportions of each element derived from the different source to be calculated. The carbonate weathering is the main source of these elements in the Xijiang drainage basin. The contribution of rainwater, especially for Na, reaches to approximately 50% in some tributaries. Dissolved elemental concentration of the river waters are corrected for rain inputs (mainly oceanic salts), the elemental concentrations derived from the different rock weathering are calculated. As a consequence, silicate, carbonate and total rock weathering rates, together with the consumption rates of atmospheric CO2 by weathering of each of these lithologies have been estimated. They provide specific chemical erosion rates varying between 5.1~17.8 t/km2/yr for silicate, 95.5~157.2 t/km2/yr for carbonate, and 100.6-169.1 t/km2/yr for total rock, respectively. CO2 consumptions by silicate and carbonate weathering approach 13><109and 270.5x10 mol/yr. Mechanical denudation rates deduced from the multi-year average of suspended load concentrations range from 92-874 t/km2/yr. The high denudation rates are mainly attributable to high relief and heavy rainfall, and acid rain is very frequent in the drainage basin, may exceed 50% and the pH value of rainwater may be <4.0, result from SO2 pollution in the atmosphere, results in the dissolution of carbonates and aluminosilicates and hence accelerates the chemical erosion rate. The compositions of minerals and elements of suspended particulate matter are also investigated. The most soluble elements (e.g. Ca, Na, Sr, Mg) are strongly depleted in the suspended phase with respect to upper continent crust, which reflects the high intensity of rock weathering in the drainage basin. Some elements (e.g. Pb, Cu, Co, Cr) show positive anomalies, Pb/Th ratios in suspended matter approach 7 times (Liu Jiang) to 10 times (Nanpan Jiang) the crustal value. The enrichment of these elements in suspended matter reflects the intensity both of anthropogenic pollution and adsorption processes onto particles. The contents of the soluble fraction of rare earth elements (REE) in the river are low, and REE mainly reside in particulate phase. In dissolved phase, the PAAS-normalized distribution patterns show significant HREE enrichment with (La/Yb) SN=0.26~0.94 and Ce depletion with (Ce/Ce*) SN=0.31-0.98, and the most pronounced negative Ce anomalies occur in rivers of high pH. In the suspended phase, the rivers have LREE-enriched patterns relative to PAAS, with (La/Yb) SN=1 -00-1 .40. The results suggest that pH is a major factor controlling both the absolute abundances of REE in solution and the fractionation of REE of dissolved phase. Ce depletion in river waters with high pH values results probably from both preferential removal of Ce onto Fe-Mn oxide coating of particles and CeC^ sedimentation. This process is known to occur in the marine environment and may also occur in high pH rivers. Positive correlations are also observed between La/Yb ratio and DOC, HCO3", PO4", suggesting that colloids and (or) adsorption processes play an important role in the control of these elements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multi-plate (NIP) mathematical model was proposed by frontal analysis to evaluate nonlinear chromatographic performance. One of its advantages is that the parameters may be easily calculated from experimental data. Moreover, there is a good correlation between it and the equilibrium-dispersive (E-D) or Thomas models. This shows that it can well accommodate both types of band broadening that is comprised of either diffusion-dominated processes or kinetic sorption processes. The MP model can well describe experimental breakthrough curves that were obtained from membrane affinity chromatography and column reversed-phase liquid chromatography. Furthermore, the coefficients of mass transfer may be calculated according to the relationship between the MP model and the E-D or Thomas models. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hulun Lake, China’s fifth-largest inland lake, experienced severe declines in water level in the period of 2000-2010. This has prompted concerns whether the lake is drying up gradually. A multi-million US dollar engineering project to construct a water channel to transfer part of the river flow from a nearby river to maintain the water level was completed in August 2010. This study aimed to advance the understanding of the key processes controlling the lake water level variation over the last five decades, as well as investigate the impact of the river transfer engineering project on the water level. A water balance model was developed to investigate the lake water level variations over the last five decades, using hydrological and climatic data as well as satellite-based measurements and results from land surface modelling. The investigation reveals that the severe reduction of river discharge (- 364±64 mm/yr, ~70% of the five-decade average) into the lake was the key factor behind the decline of the lake water level between 2000 and 2010. The decline of river discharge was due to the reduction of total runoff from the lake watershed. This was a result of the reduction of soil moisture due to the decrease of precipitation (-49±45 mm/yr) over this period. The water budget calculation suggests that the groundwater component from the surrounding lake area as well as surface run off from the un-gauged area surrounding the lake contributed ~ net 210 Mm3/yr (equivalent to ~ 100 mm/yr) water inflows into the lake. The results also show that the water diversion project did prevent a further water level decline of over 0.5 m by the end of 2012. Overall, the monthly water balance model gave an excellent prediction of the lake water level fluctuation over the last five decades and can be a useful tool to manage lake water resources in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose that a simple, closed-form mathematical expression--the Wedge-Dipole mapping--provides a concise approximation to the full-field, two-dimensional topographic structure of macaque V1, V2, and V3. A single map function, which we term a map complex, acts as a simultaneous descriptor of all three areas. Quantitative estimation of the Wedge-Dipole parameters is provided via 2DG data of central-field V1 topography and a publicly available data set of full-field macaque V1 and V2 topography. Good quantitative agreement is obtained between the data and the model presented here. The increasing importance of fMRI-based brain imaging motivates the development of more sophisticated two-dimensional models of cortical visuotopy, in contrast to the one-dimensional approximations that have been in common use. One reason is that topography has traditionally supplied an important aspect of "ground truth", or validation, for brain imaging, suggesting that further development of high-resolution fMRI will be facilitated by this data analysis. In addition, several important insights into the nature of cortical topography follows from this work. The presence of anisotropy in cortical magnification factor is shown to follow mathematically from the shared boundary conditions at the V1-V2 and V2-V3 borders, and therefore may not causally follow from the existence of columnar systems in these areas, as is widely assumed. An application of the Wedge-Dipole model to localizing aspects of visual processing to specific cortical areas--extending previous work in correlating V1 cortical magnification factor to retinal anatomy or visual psychophysics data--is briefly discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel architecture and its implementation for a versatile, miniaturised mote which can communicate concurrently using a variety of combinations of ISM bands, has increased processing capability, and interoperability with mainstream GSM technology. All these features are integrated in a small form factor platform. The platform can have many configurations which could satisfy a variety of applications’ constraints. To the best of our knowledge, it is the first integrated platform of this type reported in the literature. The proposed platform opens the way for enhanced levels of Quality of Service (QoS), with respect to reliability, availability and latency, in addition to facilitating interoperability and power reduction compared to existing platforms. The small form factor also allows potential of integration with other mobile platforms including smart phones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute myeloid leukaemia refers to cancer of the blood and bone marrow characterised by the rapid expansion of immature blasts of the myeloid lineage. The aberrant proliferation of these blasts interferes with normal haematopoiesis, resulting in symptoms such as anaemia, poor coagulation and infections. The molecular mechanisms underpinning acute myeloid leukaemia are multi-faceted and complex, with a range of diverse genetic and cytogenetic abnormalities giving rise to the acute myeloid leukaemia phenotype. Amongst the most common causative factors are mutations of the FLT3 gene, which codes for a growth factor receptor tyrosine kinase required by developing haematopoietic cells. Disruptions to this gene can result in constitutively active FLT3, driving the de-regulated proliferation of undifferentiated precursor blasts. FLT3-targeted drugs provide the opportunity to inhibit this oncogenic receptor, but over time can give rise to resistance within the blast population. The identification of targetable components of the FLT3 signalling pathway may allow for combination therapies to be used to impede the emergence of resistance. However, the intracellular signal transduction pathway of FLT3 is relatively obscure. The objective of this study is to further elucidate this pathway, with particular focus on the redox signalling element which is thought to be involved. Signalling via reactive oxygen species is becoming increasingly recognised as a crucial aspect of physiological and pathological processes within the cell. The first part of this study examined the effects of NADPH oxidase-derived reactive oxygen species on the tyrosine phosphorylation levels of acute myeloid leukaemia cell lines. Using two-dimensional phosphotyrosine immunoblotting, a range of proteins were identified as undergoing tyrosine phosphorylation in response to NADPH oxidase activity. Ezrin, a cytoskeletal regulatory protein and substrate of Src kinase, was selected for further study. The next part of this study established that NADPH oxidase is subject to regulation by FLT3. Both wild type and oncogenic FLT3 signalling were shown to affect the expression of a key NADPH oxidase subunit, p22phox, and FLT3 was also demonstrated to drive intracellular reactive oxygen species production. The NADPH oxidase target protein, Ezrin, undergoes phosphorylation on two tyrosine residues downstream of FLT3 signalling, an effect which was shown to be p22phox-dependent and which was attributed to the redox regulation of Src. The cytoskeletal associations of Ezrin and its established role in metastasis prompted the investigation of the effects of FLT3 and NADPH oxidase activity on the migration of acute myeloid leukaemia cell lines. It was found that inhibition of either FLT3 or NADPH oxidase negatively impacted on the motility of acute myeloid leukaemia cells. The final part of this study focused on the relationship between FLT3 signalling and phosphatase activity. It was determined, using phosphatase expression profiling and real-time PCR, that several phosphatases are subject to regulation at the levels of transcription and post-translational modification downstream of oncogenic FLT3 activity. In summary, this study demonstrates that FLT3 signal transduction utilises a NADPH oxidase-dependent redox element, which affects Src kinase, and modulates leukaemic cell migration through Ezrin. Furthermore, the expression and activity of several phosphatases is tightly linked to FLT3 signalling. This work reveals novel components of the FLT3 signalling cascade and indicates a range of potential therapeutic targets.