829 resultados para Motion picture plays.
Resumo:
We present existence, uniqueness and continuous dependence results for some kinetic equations motivated by models for the collective behavior of large groups of individuals. Models of this kind have been recently proposed to study the behavior of large groups of animals, such as flocks of birds, swarms, or schools of fish. Our aim is to give a well-posedness theory for general models which possibly include a variety of effects: an interaction through a potential, such as a short-range repulsion and long-range attraction; a velocity-averaging effect where individuals try to adapt their own velocity to that of other individuals in their surroundings; and self-propulsion effects, which take into account effects on one individual that are independent of the others. We develop our theory in a space of measures, using mass transportation distances. As consequences of our theory we show also the convergence of particle systems to their corresponding kinetic equations, and the local-in-time convergence to the hydrodynamic limit for one of the models.
Resumo:
INTRODUCTION: Intravoxel incoherent motion (IVIM) imaging is an MRI perfusion technique that uses a diffusion-weighted sequence with multiple b values and a bi-compartmental signal model to measure the so-called pseudo-diffusion of blood caused by its passage through the microvascular network. The goal of the current study was to assess the feasibility of IVIM perfusion fraction imaging in patients with acute stroke. METHODS: Images were collected in 17 patients with acute stroke. Exclusion criteria were onset of symptoms to imaging >5 days, hemorrhagic transformation, infratentorial lesions, small lesions <0.5 cm in minimal diameter and hemodynamic instability. IVIM imaging was performed at 3 T, using a standard spin-echo Stejskal-Tanner pulsed gradients diffusion-weighted sequence, using 16 b values from 0 to 900 s/mm(2). Image quality was assessed by two radiologists, and quantitative analysis was performed in regions of interest placed in the stroke area, defined by thresholding the apparent diffusion coefficient maps, as well as in the contralateral region. RESULTS: IVIM perfusion fraction maps showed an area of decreased perfusion fraction f in the region of decreased apparent diffusion coefficient. Quantitative analysis showed a statistically significant decrease in both IVIM perfusion fraction f (0.026 ± 0.019 vs. 0.056 ± 0.025, p = 2.2 · 10(-6)) and diffusion coefficient D compared with the contralateral side (3.9 ± 0.79 · 10(-4) vs. 7.5 ± 0.86 · 10(-4) mm(2)/s, p = 1.3 · 10(-20)). CONCLUSION: IVIM perfusion fraction imaging is feasible in acute stroke. IVIM perfusion fraction is significantly reduced in the visible infarct. Further studies should evaluate the potential for IVIM to predict clinical outcome and treatment response.
Resumo:
Image quality in magnetic resonance imaging (MRI) is considerably affected by motion. Therefore, motion is one of the most common sources of artifacts in contemporary cardiovascular MRI. Such artifacts in turn may easily lead to misinterpretations in the images and a subsequent loss in diagnostic quality. Hence, there is considerable research interest in strategies that help to overcome these limitations at minimal cost in time, spatial resolution, temporal resolution, and signal-to-noise ratio. This review summarizes and discusses the three principal sources of motion: the beating heart, the breathing lungs, and bulk patient movement. This is followed by a comprehensive overview of commonly used compensation strategies for these different types of motion. Finally, a summary and an outlook are provided.
Resumo:
This work explores a concept for motion detection in brain MR examinations using high channel-count RF coil arrays. It applies ultrashort (<100 μsec) free induction decay signals, making use of the knowledge that motion induces variations in these signals when compared to a reference free induction decay signal. As a proof-of-concept, the method was implemented in a standard structural MRI sequence. The stability of the free induction decay-signal was verified in phantom experiments. Human experiments demonstrated that the observed variations in the navigator data provide a sensitive measure for detection of relevant and common subject motion patterns. The proposed methodology provides a means to monitor subject motion throughout a MRI scan while causing little or no impact on the sequence timing and image contrast. It could hence complement available motion detection and correction methods, thus further reducing motion sensitivity in MR applications.
Resumo:
Functional imaging with intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) is demonstrated. Images were acquired at 3 Tesla using a standard Stejskal-Tanner diffusion-weighted echo-planar imaging sequence with multiple b-values. Cerebro-spinal fluid signal, which is highly incoherent, was suppressed with an inversion recovery preparation pulse. IVIM microvascular perfusion parameters were calculated according to a two-compartment (vascular and non-vascular) diffusion model. The results obtained in 8 healthy human volunteers during visual stimulation are presented. The IVIM blood flow related parameter fD* increased 170% during stimulation in the visual cortex, and 70% in the underlying white matter.
Making a silent picture speak: Paulinus of Nola, poetic competition, and early christian portraiture
Resumo:
Purpose: To evaluate the sensitivity of the perfusion parameters derived from Intravoxel Incoherent Motion (IVIM) MR imaging to hypercapnia-induced vasodilatation and hyperoxygenation-induced vasoconstriction in the human brain. Materials and Methods: This study was approved by the local ethics committee and informed consent was obtained from all participants. Images were acquired with a standard pulsed-gradient spin-echo sequence (Stejskal-Tanner) in a clinical 3-T system by using 16 b values ranging from 0 to 900 sec/mm(2). Seven healthy volunteers were examined while they inhaled four different gas mixtures known to modify brain perfusion (pure oxygen, ambient air, 5% CO(2) in ambient air, and 8% CO(2) in ambient air). Diffusion coefficient (D), pseudodiffusion coefficient (D*), perfusion fraction (f), and blood flow-related parameter (fD*) maps were calculated on the basis of the IVIM biexponential model, and the parametric maps were compared among the four different gas mixtures. Paired, one-tailed Student t tests were performed to assess for statistically significant differences. Results: Signal decay curves were biexponential in the brain parenchyma of all volunteers. When compared with inhaled ambient air, the IVIM perfusion parameters D*, f, and fD* increased as the concentration of inhaled CO(2) was increased (for the entire brain, P = .01 for f, D*, and fD* for CO(2) 5%; P = .02 for f, and P = .01 for D* and fD* for CO(2) 8%), and a trend toward a reduction was observed when participants inhaled pure oxygen (although P > .05). D remained globally stable. Conclusion: The IVIM perfusion parameters were reactive to hyperoxygenation-induced vasoconstriction and hypercapnia-induced vasodilatation. Accordingly, IVIM imaging was found to be a valid and promising method to quantify brain perfusion in humans. © RSNA, 2012.
Resumo:
In the Morris water maze (MWM) task, proprioceptive information is likely to have a poor accuracy due to movement inertia. Hence, in this condition, dynamic visual information providing information on linear and angular acceleration would play a critical role in spatial navigation. To investigate this assumption we compared rat's spatial performance in the MWM and in the homing hole board (HB) tasks using a 1.5 Hz stroboscopic illumination. In the MWM, rats trained in the stroboscopic condition needed more time than those trained in a continuous light condition to reach the hidden platform. They expressed also little accuracy during the probe trial. In the HB task, in contrast, place learning remained unaffected by the stroboscopic light condition. The deficit in the MWM was thus complete, affecting both escape latency and discrimination of the reinforced area, and was thus task specific. This dissociation confirms that dynamic visual information is crucial to spatial navigation in the MWM whereas spatial navigation on solid ground is mediated by a multisensory integration, and thus less dependent on visual information.
Resumo:
PURPOSE: To document the neurological outcome, spinal alignment and segmental range of movement after oblique cervical corpectomy (OCC) for cervical compressive myelopathy. METHODS: This retrospective study included 109 patients--93 with cervical spondylotic myelopathy and 16 with ossified posterior longitudinal ligament in whom spinal curvature and range of segmental movements were assessed on neutral and dynamic cervical radiographs. Neurological function was measured by Nurick's grade and modified Japanese Orthopedic Association (JOA) scores. Eighty-eight patients (81%) underwent either a single- or two-level corpectomy; the remaining (19%) undergoing three- or four-level corpectomies. The average duration of follow-up was 30.52 months. RESULTS: The Nurick's grade and the JOA scores showed statistically significant improvements after surgery (p < 0.001). The mean postoperative segmental angle in the neutral position straightened by 4.7 ± 6.5°. The residual segmental range of movement for a single-level corpectomy was 16.7° (59.7% of the preoperative value), for two-level corpectomy it was 20.0° (67.2%) and for three-level corpectomies it was 22.9° (74.3%). 63% of patients with lordotic spines continued to have lordosis postoperatively while only one became kyphotic without clinical worsening. Four patients with preoperative kyphotic spines showed no change in spine curvature. None developed spinal instability. CONCLUSIONS: The OCC preserves segmental motion in the short-term, however, the tendency towards straightening of the spine, albeit without clinical worsening, warrants serial follow-up imaging to determine whether this motion preservation is long lasting.
Resumo:
Measurement of microvascular perfusion with Intravoxel Incoherent Motion (IVIM) MRI is gaining interest. Yet, the physiological influences on the IVIM perfusion parameters ("pseudo-diffusion" coefficient D*, perfusion fraction f, and flow related parameter fD*) remain insufficiently characterized. In this article, we hypothesize that D* and fD*, which depend on blood speed, should vary during the cardiac cycle. We extended the IVIM model to include time dependence of D* = D*(t), and demonstrate in the healthy human brain that both parameters D* and fD* are significantly larger during systole than diastole, while the diffusion coefficient D and f do not vary significantly. The results non-invasively demonstrate the pulsatility of the brain's microvasculature.
Resumo:
Localized cutaneous leishmaniasis (LCL), known as "chiclero's ulcer" in southeast Mexico, was described by Seidelin in 1912. Since then, the sylvatic region of the Yucatan peninsula has been identified as an endemic focus of LCL. The purpose of the present work was to describe the clinical picture of LCL caused by Leishmania (Leishmania) mexicana in the Yucatan peninsula. A total of 136 cases of LCL, based on isolation and characterization of L. (L.) mexicana by isoenzymes and/or monoclonal antibodies, were selected. Some variability of clinical features regarding number, type, size, form, location and time of evolution of the lesions was observed. The most frequently observed presentation was a single, ulcerated, rounded small lesion, located on the ear, with an evolution time of less than three months, with neither cutaneous metastases nor lymphatic nor mucosal involvement. This picture corresponds to previous studies carried out in the same endemic area where an organism of the L. mexicana complex has been incriminated as a major aetiological agent of classical "chiclero's ulcer", confirming that in the Yucatan peninsula LCL due to L. (L.) mexicana when located on the pinna of the ear is a remarkable characteristic.
Resumo:
This review describes the extent of research on women's health in Ireland and assesses its adequacy as a basis for policy. Distinguishing between data collection and data analysis as components of research, the findings of the review could be summarised thus: there are some areas of womenâ?Ts health on which we do not have any data; in other areas data are collected but the data collection methods need to be gender proofed to ensure they are capable of revealing accurately the situation regarding women Download the Report here