359 resultados para Mollusks.
Resumo:
Tetradiids are a group of colonial, tubular fossils that occur globally in Middle to Upper Ordovician strata. Tetradiids were first described as a type of tabulate coral; however, based on their four-fold symmetry, division, and presence of a central-sparry canal, they were recently reinterpreted as a florideophyte rhodophyte algae, a reinterpretation that is tested in this thesis. This study focused on understanding the affinity and taphonomy of this order of fossil. Research was conducted by stratigraphic and petrographic analyses of the Black River Group in the Kingston, Ontario region. Tetradiid occurrences were divided into fragment or colonial, with three morphologies of tetradiids described (Tetradium, Phytopsis and Paratetradium). Morphology is specific to depositional environment, with compact Tetradium consistently within ooid grainstones and open branching Phytopsis and chained Paratetradium consistently within mudstones. Two types of patch reefs were recognized: a Paratetradium bioherm, and a Paratetradium, Phytopsis, stromatolite bioherm. The presence of bioherms implies that tetradiids were capable of hypercalcifying. Preservation styles of tetradiids were investigated, and were compared to brachiopods, echinoderms, mollusks, and ooids. Tetradiids were preferentially preserved as molds and demonstrated complete dissolution of skeletal material. Rare specimens, however, demonstrated preserved horizontal partitions, central plates, and a double wall. Skeletal molds were filled with either calcite spar, mud or encrusted by a cryptomicrobial colony. Both calcitic and aragonitic ooids were discovered. The co-occurrence of aragonitic ooids, aragonitic crytodontids, and the evolution of aragonitic, hypercalcifying tetradiids is interpreted as representing the geochemical favoring of aragonite and HMC in a time of global calcite seas. The geochemical favoring of aragonite is interpreted to be independent to global Mg: Ca ratios, but was the result of increased saturation levels and temperature driven by high atmospheric pCO2. Based on the presence of epitheca, tabulae, septa, and the commonality of growth forms, tetradiids are interpreted as an order of Cnidaria. The evolution of an aragonitic skeleton in tetradiids is interpreted to be the result of de novo acquisition of a skeleton from an unmineralized clade.
Resumo:
The globally warm climate of the early Pliocene gradually cooled from 4 million years ago, synchronous with decreasing atmospheric CO2 concentrations. In contrast, palaeoceanographic records indicate that the Nordic Seas cooled during the earliest Pliocene, before global cooling. However, a lack of knowledge regarding the precise timing of Nordic Seas cooling has limited our understanding of the governing mechanisms. Here, using marine palynology, we show that cooling in the Nordic Seas was coincident with the first trans-Arctic migration of cool-water Pacific mollusks around 4.5 million years ago, and followed by the development of a modern-like Nordic Seas surface circulation. Nordic Seas cooling precedes global cooling by 500,000 years; as such, we propose that reconfiguration of the Bering Strait and Central American Seaway triggered the development of a modern circulation in the Nordic Seas, which is essential for North Atlantic Deep Water formation and a precursor for more widespread Greenland glaciation in the late Pliocene.
Resumo:
Ecological and taxonomic study of the mollusk-rich fauna of the Golfe d'Arguin, North Mauritania, investigates the various environmental influences affecting this tropical shelf. The upwelling of nutrient-rich waters leads to a highly productive environment under tropical conditions. The resulting mixed carbonate-siliciclastic sediment contains a large portion of calcareous components produced by heterotrophic organisms-e.g., mollusks, foraminifers, worms, barnacles-that are reworked on the open shelf. On the basis of mollusk assemblages, six taphocoenoses are defined, all being characterized by a mixed fauna of tropical (e.g., Tellina densestriata), subtropical (e.g., Macoma cumana) and temperate (e.g., Spisula subtruncata) species. Differences between the assemblages are related to the medium-grain size ranging from mud to gravel-that results from local hydrodynamic conditions and water depth. Among carbonate grains, Donax burnupi shells are very abundant in the swell-exposed, northern part of the Golfe d'Arguin and reflect the tropical to subtropical, high-energy, and high-nutrient waters. Mollusk assemblages are demonstrated to be a sensitive tool for deciphering complex environmental conditions in sedimentary archives.
Resumo:
Variations in the 18O/16O ratios of marine fossils and microfossils record changes in seawater 18O/16O and temperature and form the basis for global correlation. Relying on previous compilations and new data, this chapter presents oxygen isotope curves for Phanerozoic foraminifera, mollusks, brachiopods, and conodonts, and for Precambrian limestones, dolostones, and cherts. Periodic oxygen-isotopic variations in deep-sea foraminifera define marine isotope stages that, when combined with biostratigraphy and astronomical tuning, provide a late Cenozoic chronostratigraphy with a resolution of several thousand years. Oxygen isotope events of early Cenozoic, Mesozoic, and Paleozoic age serve as chemostratigraphic markers for regional and global correlation. Precambrian oxygen isotope stratigraphy, however, is hampered by the lack of unaltered authigenic marine sediments.
Resumo:
The anthropogenic release of carbon dioxide (CO2) into the atmosphere leads to an increase in the CO2 partial pressure (pCO2) in the ocean, which may reach 950 ?atm by the end of the 21st century. The resulting hypercapnia (high pCO2) and decreasing pH ("ocean acidification") are expected to have appreciable effects on water-breathing organisms, especially on their early-life stages. For organisms like squid that lay their eggs in coastal areas where the embryo and then paralarva are also exposed to metal contamination, there is a need for information on how ocean acidification may influence trace element bioaccumulation during their development. In this study, we investigated the effects of enhanced levels of pCO2 (380, 850 and 1500 ?atm corresponding to pHT of 8.1, 7.85 and 7.60) on the accumulation of dissolved 110mAg, 109Cd, 57Co, 203Hg, 54Mn and 65Zn radiotracers in the whole egg strand and in the different compartments of the egg of Loligo vulgaris during the embryonic development and also in hatchlings during their first days of paralarval life. Retention properties of the eggshell for 110mAg, 203Hg and 65Zn were affected by the pCO2 treatments. In the embryo, increasing seawater pCO2 enhanced the uptake of both 110mAg and 65Zn while 203Hg showed a minimum concentration factor (CF) at the intermediate pCO2. 65Zn incorporation in statoliths also increased with increasing pCO2. Conversely, uptake of 109Cd and 54Mn in the embryo decreased as a function of increasing pCO2. Only the accumulation of 57Co in embryos was not affected by increasing pCO2. In paralarvae, the CF of 110mAg increased with increasing pCO2, whereas the 57Co CF was reduced at the highest pCO2 and 203Hg showed a maximal uptake rate at the intermediate pCO2. 54Mn and 65Zn accumulation in paralarvae were not significantly modified by hypercapnic conditions. Our results suggest a combined effect of pH on the adsorption and protective properties of the eggshell and of hypercapnia on the metabolism of embryo and paralarvae, both causing changes to the accumulation of metals in the tissues of L. vulgaris.
Resumo:
Mode of access: Internet.
Resumo:
Issued in parts: pts. I-VII published 1845-55; pt. VIII (Supplementary) 1910.
Resumo:
Vol. XIV- are of Smithsonian issue.
Resumo:
Mode of access: Internet.
Resumo:
Extracted from the Philippine Journal of Science, v.18, no.1.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Engraved portrait and title-page within architectural border; woodcut illustrations throughout the text.
Resumo:
Title from cover.