892 resultados para Modified ink mileage
Resumo:
The sensory, physical and chemical characteristics of 'Douradão' peaches cold stored in different modified atmosphere packaging (LDPE bags of 30, 50, 60, 75µm thickness) were studied. After 14, 21 and 28 days of cold storage (1 ± 1 ºC and 90 ± 5% RH), samples were withdrawn from MAP and kept during 4 days in ambient air for ripening. Descriptive terminology and sensory profile of the peaches were developed by methodology based on the Quantitative Descriptive Analysis (QDA). The assessors consensually defined the sensory descriptors, their respective reference materials and the descriptive evaluation ballot. Fourteen individuals were selected as judges based on their discrimination capacity and reproducibility. Seven descriptors were generated showing similarities and differences among the samples. The data were analysed by ANOVA, Tukey test and Principal Component Analysis (PCA). The atmospheres that developed inside the different packaging materials during cold storage differed significantly. The PCA showed that MA50 and MA60 treatments were more characterized by the fresh peach flavour, fresh appearance, juiciness and flesh firmness, and were effective for keeping good quality of 'Douradão' peaches during 28 d of cold storage. The Control and MA30 treatments were characterized by the mealiness, the MA75 treatment showed lower intensity for all attributes evaluated and they were ineffective to maintain good quality of the fruits during cold storage. Higher correlation coefficients (positive) were found between fresh appearance and flesh firmness (0.95), fresh appearance and juiciness (0.97), ratio and intensity of fresh peach smell (0.81), as well as higher correlation coefficients (negative) between Hue angle and intensity of yellow colour (-0.91), fresh appearance and mealiness (-0.92), juiciness and mealiness (-0.95), firmness and mealiness (-0.94).
Resumo:
'Douradão' peach is a perishable product and when cold stored is subject to chilling injury. The objective of the experiment was to evaluate the effect of modified atmosphere packaging (MAP) and cold storage on quality and storage life of these peaches. Fruits were packed in polypropylene (PP) trays and placed inside low density polyethylene (LDPE) bags (30, 50, 60, 75 μm thickness) with active modified atmosphere (10 kPa CO2 + 1.5kPa O2, balance N2). The control was made with peaches held in nonwrapped PP trays. Fruits were kept at 1 ± 1 °C and 90 ± 5% relative humidity (RH) for 28 days and CO2 and O2 within packages was monitored every two days. After 14, 21 and 28 days, samples were withdrawn from MAP and kept in air at 25 ± 1 °C and 90 ± 5% RH for ripening. On the day of removal from the cold storage and after 4 days, peaches were evaluated for weight loss, decay incidence, flesh firmness, woolliness incidence, soluble solids content (SSC), titratable acidity (TA) and juice content. The results showed that MAP had influence on reducing weight loss and prevented postharvest decay. MAP of 1-2 kPa O2 and 3-6 kPa CO2 at 1 °C (from 50 and 60 μm LDPE films) were effective for keeping good quality of 'Douradão' peaches during 28 days of storage, the ripe fruits showed reduced incidence of woolliness, adequate juiciness and flesh firmness. Packages of 30 and 75 μm LDPE films were ineffective for reducing woolliness during cold storage. MAP fruits showed lower SSC and no relevant effect on TA. Control fruits did not present marketable conditions after 14 days of cold storage.
Resumo:
The present study evaluated the effects of modified atmosphere packaging on inhibition of the development of chilling injury symptoms in 'Douradão' peach after cold storage and the possible involvement of cell wall enzymes. Fruits were harvested at the middle stadium of ripening, packed in polypropylene trays and placed inside low density polyethylene (LDPE) bags (30, 50, 60 and 75 µm of thickness) with active modified atmosphere (10 kPa CO2 + 1.5 kPa O2, balance N2). The following treatments were tested: Control: peaches held in nonwrapped trays; MA30: LDPE film - 30 µm; MA50: LDPE film - 50 µm; MA60: LDPE film - 60 µm and MA75: LDPE film - 75 µm. Fruits were kept at 1±1ºC and 90±5% relative humidity (RH) for 28 days. After 14, 21 and 28 days, samples were withdrawn from MAP and kept in air at 25±1ºC and 90±5% RH for ripening. On the day of removal and after 4 days, peaches were evaluated for woolliness incidence, pectolytic enzymes activities. The respiratory rate and ethylene synthesis were monitored during 6 days of ripening. The results showed that MA50 and MA60 treatments had positive effect on the inhibition of the development of woolly texture and reduced pectin methylesterase activity on the ripe fruits, keeping good quality of 'Douradão' peach during 28 days of cold storage. The treatments Control, MA30 and MA75 showed higher woolliness incidence and did not present marketable conditions after 14 days of cold storage.
Resumo:
Replication of human immunodeficiency virus (HIV) requires base pairing of the reverse transcriptase primer, human tRNA(Lys3), to the viral RNA. Although the major complementary base pairing occurs between the HIV primer binding sequence (PBS) and the tRNA's 3'-terminus, an important discriminatory, secondary contact occurs between the viral A-rich Loop I, 5'-adjacent to the PBS, and the modified, U-rich anticodon domain of tRNA(Lys3). The importance of individual and combined anticodon modifications to the tRNA/HIV-1 Loop I RNA's interaction was determined. The thermal stabilities of variously modified tRNA anticodon region sequences bound to the Loop I of viral sub(sero)types G and B were analyzed and the structure of one duplex containing two modified nucleosides was determined using NMR spectroscopy and restrained molecular dynamics. The modifications 2-thiouridine, s(2)U(34), and pseudouridine, Psi(39), appreciably stabilized the interaction of the anticodon region with the viral subtype G and B RNAs. The structure of the duplex results in two coaxially stacked A-form RNA stems separated by two mismatched base pairs, U(162)*Psi(39) and G(163)*A(38), that maintained a reasonable A-form helix diameter. The tRNA's s(2)U(34) stabilized the interaction between the A-rich HIV Loop I sequence and the U-rich anticodon, whereas the tRNA's Psi(39) stabilized the adjacent mismatched pairs.
Resumo:
A review dealing with the use of screen-printing technology to manufacture disposable electrodes is presented, covering in details virtually all the publications in the area up to early 1997 and including 206 references. The elements and different strategies on constructing modified electrodes are highlighted. Commercial and Home-made ink recipes are discussed. Microelectrode arrays, built by the combination of photostructuring and screen-printing technologies to the mass production of advanced disposable sensors, are also discussed. Future research trends are predicted.
Resumo:
Cesarean section (CS) is now the most common major surgical procedure performed on women worldwide. A quarter of deliveries in Spain are performed by cesarean section. With the increasing rates of the operation, there is the need to use evidence-based techniques to optimize outcomes and minimize complications. The goal of this study is to employ a well-designed randomized controlled trial to evaluate the intraoperative blood loss of two surgical techniques for cesarean section, the Pelosi-type and the modified Misgav-Ladach. The trial will take place in Hospital Universitari de Girona Dr. Josep Trueta From 2014 to 2015, 512 pregnant women undergoing delivery by their first lower segment cesarean section in this center will be selected through a consecutive nonprobability sampling. We will collect the main obstetrical characteristics, intraoperative outcomes, short-term outcomes for the baby and postoperative outcomes. We will evaluate the intraoperative blood loss by comparing the changes in hemoglobin levels, pre and postoperatively. Patients will be followed during the postoperative period and in a two-week postoperative appointment. We will analyze the continuous variables, such as the differences in hemoglobin levels, using an unpaired two-sided Student’s t-test, while for the categorical variables Fischer’s exact test will be used
Resumo:
Herein, we have investigated the solubilization of decane into a novel nonionic gemini surfactant, myristoyl-end capped Jeffamine, synthesized from a polyoxyalkyleneamine (ED900). Starting from this system, porous silica materials have been prepared. Performing the hydrothermal treatment at low temperature, a slight increase of the mesopore diameter is observed in the presence of decane. Increasing the temperature of the hydrothermal treatment, no swelling effect of decane is detected. By contrast, the pore diameter decreases but better mesopore homogeneity and a larger wall thickness are obtained. At high decane concentration the new myristoyl-end capped Jeffamine/decane/water system forms oil-in-water emulsions, which are used as template for the formation of hierarchical porous silica materials.
Resumo:
Rosin is a natural product from pine forests and it is used as a raw material in resinate syntheses. Resinates are polyvalent metal salts of rosin acids and especially Ca- and Ca/Mg- resinates find wide application in the printing ink industry. In this thesis, analytical methods were applied to increase general knowledge of resinate chemistry and the reaction kinetics was studied in order to model the non linear solution viscosity increase during resinate syntheses by the fusion method. Solution viscosity in toluene is an important quality factor for resinates to be used in printing inks. The concept of critical resinate concentration, c crit, was introduced to define an abrupt change in viscosity dependence on resinate concentration in the solution. The concept was then used to explain the non-inear solution viscosity increase during resinate syntheses. A semi empirical model with two estimated parameters was derived for the viscosity increase on the basis of apparent reaction kinetics. The model was used to control the viscosity and to predict the total reaction time of the resinate process. The kinetic data from the complex reaction media was obtained by acid value titration and by FTIR spectroscopic analyses using a conventional calibration method to measure the resinate concentration and the concentration of free rosin acids. A multivariate calibration method was successfully applied to make partial least square (PLS) models for monitoring acid value and solution viscosity in both mid-infrared (MIR) and near infrared (NIR) regions during the syntheses. The calibration models can be used for on line resinate process monitoring. In kinetic studies, two main reaction steps were observed during the syntheses. First a fast irreversible resination reaction occurs at 235 °C and then a slow thermal decarboxylation of rosin acids starts to take place at 265 °C. Rosin oil is formed during the decarboxylation reaction step causing significant mass loss as the rosin oil evaporates from the system while the viscosity increases to the target level. The mass balance of the syntheses was determined based on the resinate concentration increase during the decarboxylation reaction step. A mechanistic study of the decarboxylation reaction was based on the observation that resinate molecules are partly solvated by rosin acids during the syntheses. Different decarboxylation mechanisms were proposed for the free and solvating rosin acids. The deduced kinetic model supported the analytical data of the syntheses in a wide resinate concentration region, over a wide range of viscosity values and at different reaction temperatures. In addition, the application of the kinetic model to the modified resinate syntheses gave a good fit. A novel synthesis method with the addition of decarboxylated rosin (i.e. rosin oil) to the reaction mixture was introduced. The conversion of rosin acid to resinate was increased to the level necessary to obtain the target viscosity for the product at 235 °C. Due to a lower reaction temperature than in traditional fusion synthesis at 265 °C, thermal decarboxylation is avoided. As a consequence, the mass yield of the resinate syntheses can be increased from ca. 70% to almost 100% by recycling the added rosin oil.
Resumo:
Ultra-trace amounts of Cu(II) were separated and preconcentrated by solid phase extraction on octadecyl-bonded silica membrane disks modified with a new Schiff,s base (Bis- (2-Hydroxyacetophenone) -2,2-dimethyl-1,3-propanediimine) (SBTD) followed by elution and inductively coupled plasma atomic emission spectrometric detection. The method was applied as a separation and detection method for copper(II) in environmental and biological samples. Extraction efficiency and the influence of sample matrix, flow rate, pH, and type and minimum amount of stripping acid were investigated. The concentration factor and detection limit of the proposed method are 500 and 12.5 pg mL-1, respectively.
Resumo:
Chromium(III) at the ng L-1 level was extracted using partially silylated MCM-41 modified by a tetraazamacrocyclic compound (TAMC) and determined by inductively coupled plasma optical emision spectrometry (ICP OES). The extraction time and efficiency, pH and flow rate, type and minimum amount of stripping acid, and break- through volume were investigated. The method's enrichment factor and detection limit are 300 and 45.5 pg mL-1, respectively. The maximum capacity of the 10 mg of modified silylated MCM-41 was found to be 400.5±4.7 µg for Cr(III). The method was applied to the determination of Cr(III) and Cr(VI) in the wastewater of the chromium electroplating industry and in environmental and biological samples (black tea, hot and black pepper).
Resumo:
In this research work, the results of an investigation dealing with welding of sheet metals with diverse air gap using FastROOT modified short arc welding method and short circuit MAG welding processes have been presented. Welding runs were made under different conditions and, during each run, the different process parameters were continuously monitored. It was found that maximum welding speed and less HAZ are reached under specific welding conditions with FastROOT method with the emphasis on arc stability. Welding results show that modified short arc exhibits a higher electrode melting coefficient and with virtually spatter free droplet transition. By adjusting the short circuit duration the penetration can be controlled with only a small change in electrode deposition. Furthermore, by mixing pulsed MIG welding with modified arc welding the working envelope of the process is greatly extended allowing thicker material sections to be welded with improved weld bead aesthetics. FastROOT is a modified short arc welding process using mechanized or automated welding process based on dip transfer welding, characterized by controlled material deposition during the short circuit of the wire electrode to the workpiece.