954 resultados para Model information
Resumo:
Information Retrieval is an important albeit imperfect component of information technologies. A problem of insufficient diversity of retrieved documents is one of the primary issues studied in this research. This study shows that this problem leads to a decrease of precision and recall, traditional measures of information retrieval effectiveness. This thesis presents an adaptive IR system based on the theory of adaptive dual control. The aim of the approach is the optimization of retrieval precision after all feedback has been issued. This is done by increasing the diversity of retrieved documents. This study shows that the value of recall reflects this diversity. The Probability Ranking Principle is viewed in the literature as the “bedrock” of current probabilistic Information Retrieval theory. Neither the proposed approach nor other methods of diversification of retrieved documents from the literature conform to this principle. This study shows by counterexample that the Probability Ranking Principle does not in general lead to optimal precision in a search session with feedback (for which it may not have been designed but is actively used). Retrieval precision of the search session should be optimized with a multistage stochastic programming model to accomplish the aim. However, such models are computationally intractable. Therefore, approximate linear multistage stochastic programming models are derived in this study, where the multistage improvement of the probability distribution is modelled using the proposed feedback correctness method. The proposed optimization models are based on several assumptions, starting with the assumption that Information Retrieval is conducted in units of topics. The use of clusters is the primary reasons why a new method of probability estimation is proposed. The adaptive dual control of topic-based IR system was evaluated in a series of experiments conducted on the Reuters, Wikipedia and TREC collections of documents. The Wikipedia experiment revealed that the dual control feedback mechanism improves precision and S-recall when all the underlying assumptions are satisfied. In the TREC experiment, this feedback mechanism was compared to a state-of-the-art adaptive IR system based on BM-25 term weighting and the Rocchio relevance feedback algorithm. The baseline system exhibited better effectiveness than the cluster-based optimization model of ADTIR. The main reason for this was insufficient quality of the generated clusters in the TREC collection that violated the underlying assumption.
Resumo:
Ultraviolet radiation (UV) is the carcinogen that causes the most common malignancy in humans – skin cancer. However, moderate UV exposure is essential for producing vitaminDin our skin. VitaminDincreases the absorption of calcium from the diet, and adequate calcium is necessary for the building and maintenance of bones. Thus, low levels of vitamin D can cause osteomalacia and rickets and contribute to osteoporosis. Emerging evidence also suggests vitamin D may protect against falls, internal cancers, psychiatric conditions, autoimmune diseases and cardiovascular diseases. Since the dominant source of vitamin D is sunlight exposure, there is a need to understand what is a “balanced” level of sun exposure to maintain an adequate level of vitamin D but minimise the risks of eye damage, skin damage and skin cancer resulting from excessive UV exposure. There are many steps in the pathway from incoming solar UV to the eventual vitamin D status of humans (measured as 25-hydroxyvitamin D in the blood), and our knowledge about many of these steps is currently incomplete. This project begins by investigating the levels of UV available for synthesising vitamin D, and how these levels vary across seasons, latitudes and times of the day. The thesis then covers experiments conducted with an in vitro model, which was developed to study several aspects of vitamin D synthesis. Results from the model suggest the relationship between UV dose and vitamin D is not linear. This is an important input into public health messages regarding ‘safe’ UV exposure: larger doses of UV, beyond a certain limit, may not continue to produce vitamin D; however, they will increase the risk of skin cancers and eye damage. The model also showed that, when given identical doses of UV, the amount of vitamin D produced was impacted by temperature. In humans, a temperature-dependent reaction must occur in the top layers of human skin, prior to vitamin D entering the bloodstream. The hypothesis will be raised that cooler temperatures (occurring in winter and at high latitudes) may reduce vitamin D production in humans. Finally, the model has also been used to study the wavelengths of UV thought to be responsible for producing vitamin D. It appears that vitamin D production is limited to a small range of UV wavelengths, which may be narrower than previously thought. Together, these results suggest that further research is needed into the ability of humans to synthesise vitamin D from sunlight. In particular, more information is needed about the dose-response relationship in humans and to investigate the proposed impact of temperature. Having an accurate action spectrum will also be essential for measuring the available levels of vitamin D-effective UV. As this research continues, it will contribute to the scientific evidence-base needed for devising a public health message that will balance the risks of excessive UV exposure with maintaining adequate vitamin D.
Resumo:
This paper explores the philosophical roots of appropriation within Marx's theories and socio-cultural studies in an attempt to seek common ground among existing theories of technology appropriation in IS research. Drawing on appropriation perspectives from Adaptive Structuration Theory, the Model of Technology Appropriation and the Structurational Model of Technology for comparison, we aim to generate a Marxian model that provides a starting point toward a general causal model of technology appropriation. This paper opens a philosophical discussion on the phenomenon of appropriation in the IS community, directing attention to foundational concepts in the human-technology nexus using ideas conceived by Marx.
Resumo:
Process models are used by information professionals to convey semantics about the business operations in a real world domain intended to be supported by an information system. The understandability of these models is vital to them actually being used. After all, what is not understood cannot be acted upon. Yet until now, understandability has primarily been defined as an intrinsic quality of the models themselves. Moreover, those studies that looked at understandability from a user perspective have mainly conceptualized users through rather arbitrary sets of variables. In this paper we advance an integrative framework to understand the role of the user in the process of understanding process models. Building on cognitive psychology, goal-setting theory and multimedia learning theory, we identify three stages of learning required to realize model understanding, these being Presage, Process, and Product. We define eight relevant user characteristics in the Presage stage of learning, three knowledge construction variables in the Process stage and three potential learning outcomes in the Product stage. To illustrate the benefits of the framework, we review existing process modeling work to identify where our framework can complement and extend existing studies.
Resumo:
As a result of the growing adoption of Business Process Management (BPM) technology different stakeholders need to understand and agree upon the process models that are used to configure BPM systems. However, BPM users have problems dealing with the complexity of such models. Therefore, the challenge is to improve the comprehension of process models. While a substantial amount of literature is devoted to this topic, there is no overview of the various mechanisms that exist to deal with managing complexity in (large) process models. It is thus hard to obtain comparative insight into the degree of support offered for various complexity reducing mechanisms by state-of-the-art languages and tools. This paper focuses on complexity reduction mechanisms that affect the abstract syntax of a process model, i.e. the structure of a process model. These mechanisms are captured as patterns, so that they can be described in their most general form and in a language- and tool-independent manner. The paper concludes with a comparative overview of the degree of support for these patterns offered by state-of-the-art languages and language implementations.
Resumo:
In this paper, we examine the design of business process diagrams in contexts where novice analysts only have basic design tools such as paper and pencils available, and little to no understanding of formalized modeling approaches. Based on a quasi-experimental study with 89 BPM students, we identify five distinct process design archetypes ranging from textual to hybrid, and graphical representation forms. We also examine the quality of the designs and identify which representation formats enable an analyst to articulate business rules, states, events, activities, temporal and geospatial information in a process model. We found that the quality of the process designs decreases with the increased use of graphics and that hybrid designs featuring appropriate text labels and abstract graphical forms are well-suited to describe business processes. Our research has implications for practical process design work in industry as well as for academic curricula on process design.
Resumo:
Powerful brands create meaningful images in the minds of customers (Keller, 1993). A strong brand image and reputation enhances differentiation and has a positive influence on buying behaviour (Gordon et al., 1993; McEnally and de Chernatony, 1999). While the power of branding is widely acknowledged in consumer markets, the nature and importance of branding in industrial markets remains under-researched. Many business-to-business (B2B) strategists have claimed brand-building belongs in the consumer realm. They argue that industrial products do not need branding as it is confusing and adds little value to functional products (Collins, 1977; Lorge, 1998; Saunders and Watt, 1979). Others argue that branding and the concept of brand equity however are increasingly important in industrial markets, because it has been shown that what a brand means to a buyer can be a determining factor in deciding between industrial purchase alternatives (Aaker, 1991). In this context, it is critical for suppliers to initiate and sustain relationships due to the small number of potential customers (Ambler, 1995; Webster and Keller, 2004). To date however, there is no model available to assist B2B marketers in identifying and measuring brand equity. In this paper, we take a step in that direction by operationalising and empirically testing a prominent brand equity model in a B2B context. This makes not only a theoretical contribution by advancing branding research, but also addresses a managerial need for information that will assist in the assessment of industrial branding efforts.
Resumo:
While IS function has gained widespread attention for over two decades, there is little consensus among information systems (IS) researchers and practitioners on how best to evaluate IS function's support performance. This paper reports on preliminary findings of a larger research effort proceeds from a central interest in the importance of evaluating IS function's support in organisations. This study is the first that attempts to re-conceptualise and conceive evaluate IS function's support as a multi- dimensional formative construct. We argue that a holistic measure for evaluating evaluate IS function's support should consist of dimensions that together assess the variety of the support functions and the quality of the support services provided to end-users. Thus, the proposed model consists of two halves, "Variety" and "Quality" within which resides seven dimensions. The Variety half includes five dimensions: Training; Documentation; Data- related Support, Software-related Support; and Hardware-related Support. The Quality half includes two dimensions: IS Support Staff and Support Services Performance. The proposed model is derived using a directed content analysis of 83 studies; from top IS outlets, employing the characteristics of the analytic theory and consistent with formative construct development procedures.
Resumo:
Broad, early definitions of sustainable development have caused confusion and hesitation among local authorities and planning professionals. This confusion has arisen because loosely defined principles of sustainable development have been employed when setting policies and planning projects, and when gauging the efficiencies of these policies in the light of designated sustainability goals. The question of how this theory-rhetoric-practice gap can be filled is the main focus of this chapter. It examines the triple bottom line approach–one of the sustainability accounting approaches widely employed by governmental organisations–and the applicability of this approach to sustainable urban development. The chapter introduces the ‘Integrated Land Use and Transportation Indexing Model’ that incorporates triple bottom line considerations with environmental impact assessment techniques via a geographic, information systems-based decision support system. This model helps decision-makers in selecting policy options according to their economic, environmental and social impacts. Its main purpose is to provide valuable knowledge about the spatial dimensions of sustainable development, and to provide fine detail outputs on the possible impacts of urban development proposals on sustainability levels. In order to embrace sustainable urban development policy considerations, the model is sensitive to the relationship between urban form, travel patterns and socio-economic attributes. Finally, the model is useful in picturing the holistic state of urban settings in terms of their sustainability levels, and in assessing the degree of compatibility of selected scenarios with the desired sustainable urban future.
Resumo:
Minimizing complexity of group key exchange (GKE) protocols is an important milestone towards their practical deployment. An interesting approach to achieve this goal is to simplify the design of GKE protocols by using generic building blocks. In this paper we investigate the possibility of founding GKE protocols based on a primitive called multi key encapsulation mechanism (mKEM) and describe advantages and limitations of this approach. In particular, we show how to design a one-round GKE protocol which satisfies the classical requirement of authenticated key exchange (AKE) security, yet without forward secrecy. As a result, we obtain the first one-round GKE protocol secure in the standard model. We also conduct our analysis using recent formal models that take into account both outsider and insider attacks as well as the notion of key compromise impersonation resilience (KCIR). In contrast to previous models we show how to model both outsider and insider KCIR within the definition of mutual authentication. Our analysis additionally implies that the insider security compiler by Katz and Shin from ACM CCS 2005 can be used to achieve more than what is shown in the original work, namely both outsider and insider KCIR.
Resumo:
This paper presents a novel study that aims to contribute to understanding the phenomenon of Enterprise Systems (ES) evaluation in Australasian universities. The proposed study addresses known limitations of arguably the most significant dependent variable in the Information System (IS) field - IS Success or IS-Impact. This study adopts the IS-Impact measurement model, reported by Gable et al. (2008), as the primary commencing theory-base and applies research extension strategy described by Berthon et al. (2002); extending both theory and the context. This study employs a longitudinal, multi-method research design, with two interrelated phases – exploratory and confirmatory. The exploratory phase aims to investigate the applicability and sufficiency of the IS-Impact dimensions and measures in the new context. The confirmatory phase will gather quantitative data to statistically validate IS-Impact model as a formative index.
Resumo:
We give a direct construction of a certificateless key encapsulation mechanism (KEM) in the standard model that is more efficient than the generic constructions proposed before by Huang and Wong \cite{DBLP:conf/acisp/HuangW07}. We use a direct construction from Kiltz and Galindo's KEM scheme \cite{DBLP:conf/acisp/KiltzG06} to obtain a certificateless KEM in the standard model; our construction is roughly twice as efficient as the generic construction. We also address the security flaw discovered by Selvi et al. \cite{cryptoeprint:2009:462}.
Resumo:
We show how to construct a certificateless key agreement protocol from the certificateless key encapsulation mechanism introduced by \cite{lippold-ICISC_2009} in ICISC 2009 using the \cite{DBLP:conf/acisp/BoydCNP08} protocol from ACISP 2008. We introduce the Canetti-Krawczyk (CK) model for certificateless cryptography, give security notions for Type I and Type II adversaries in the CK model, and highlight the differences to the existing e$^2$CK model discussed by \cite{DBLP:conf/pairing/LippoldBN09}. The resulting CK model is more relaxed thus giving more power to the adversary than the original CK model.
Resumo:
Uninhabited aerial vehicles (UAVs) are a cutting-edge technology that is at the forefront of aviation/aerospace research and development worldwide. Many consider their current military and defence applications as just a token of their enormous potential. Unlocking and fully exploiting this potential will see UAVs in a multitude of civilian applications and routinely operating alongside piloted aircraft. The key to realising the full potential of UAVs lies in addressing a host of regulatory, public relation, and technological challenges never encountered be- fore. Aircraft collision avoidance is considered to be one of the most important issues to be addressed, given its safety critical nature. The collision avoidance problem can be roughly organised into three areas: 1) Sense; 2) Detect; and 3) Avoid. Sensing is concerned with obtaining accurate and reliable information about other aircraft in the air; detection involves identifying potential collision threats based on available information; avoidance deals with the formulation and execution of appropriate manoeuvres to maintain safe separation. This thesis tackles the detection aspect of collision avoidance, via the development of a target detection algorithm that is capable of real-time operation onboard a UAV platform. One of the key challenges of the detection problem is the need to provide early warning. This translates to detecting potential threats whilst they are still far away, when their presence is likely to be obscured and hidden by noise. Another important consideration is the choice of sensors to capture target information, which has implications for the design and practical implementation of the detection algorithm. The main contributions of the thesis are: 1) the proposal of a dim target detection algorithm combining image morphology and hidden Markov model (HMM) filtering approaches; 2) the novel use of relative entropy rate (RER) concepts for HMM filter design; 3) the characterisation of algorithm detection performance based on simulated data as well as real in-flight target image data; and 4) the demonstration of the proposed algorithm's capacity for real-time target detection. We also consider the extension of HMM filtering techniques and the application of RER concepts for target heading angle estimation. In this thesis we propose a computer-vision based detection solution, due to the commercial-off-the-shelf (COTS) availability of camera hardware and the hardware's relatively low cost, power, and size requirements. The proposed target detection algorithm adopts a two-stage processing paradigm that begins with an image enhancement pre-processing stage followed by a track-before-detect (TBD) temporal processing stage that has been shown to be effective in dim target detection. We compare the performance of two candidate morphological filters for the image pre-processing stage, and propose a multiple hidden Markov model (MHMM) filter for the TBD temporal processing stage. The role of the morphological pre-processing stage is to exploit the spatial features of potential collision threats, while the MHMM filter serves to exploit the temporal characteristics or dynamics. The problem of optimising our proposed MHMM filter has been examined in detail. Our investigation has produced a novel design process for the MHMM filter that exploits information theory and entropy related concepts. The filter design process is posed as a mini-max optimisation problem based on a joint RER cost criterion. We provide proof that this joint RER cost criterion provides a bound on the conditional mean estimate (CME) performance of our MHMM filter, and this in turn establishes a strong theoretical basis connecting our filter design process to filter performance. Through this connection we can intelligently compare and optimise candidate filter models at the design stage, rather than having to resort to time consuming Monte Carlo simulations to gauge the relative performance of candidate designs. Moreover, the underlying entropy concepts are not constrained to any particular model type. This suggests that the RER concepts established here may be generalised to provide a useful design criterion for multiple model filtering approaches outside the class of HMM filters. In this thesis we also evaluate the performance of our proposed target detection algorithm under realistic operation conditions, and give consideration to the practical deployment of the detection algorithm onboard a UAV platform. Two fixed-wing UAVs were engaged to recreate various collision-course scenarios to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. Based on this collected data, our proposed detection approach was able to detect targets out to distances ranging from about 400m to 900m. These distances, (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning ahead of impact that approaches the 12.5 second response time recommended for human pilots. Furthermore, readily available graphic processing unit (GPU) based hardware is exploited for its parallel computing capabilities to demonstrate the practical feasibility of the proposed target detection algorithm. A prototype hardware-in- the-loop system has been found to be capable of achieving data processing rates sufficient for real-time operation. There is also scope for further improvement in performance through code optimisations. Overall, our proposed image-based target detection algorithm offers UAVs a cost-effective real-time target detection capability that is a step forward in ad- dressing the collision avoidance issue that is currently one of the most significant obstacles preventing widespread civilian applications of uninhabited aircraft. We also highlight that the algorithm development process has led to the discovery of a powerful multiple HMM filtering approach and a novel RER-based multiple filter design process. The utility of our multiple HMM filtering approach and RER concepts, however, extend beyond the target detection problem. This is demonstrated by our application of HMM filters and RER concepts to a heading angle estimation problem.
Resumo:
There has been a worldwide trend to increase axle loads and train speeds. This means that railway track degradation will be accelerated, and track maintenance costs will be increased significantly. There is a need to investigate the consequences of increasing traffic load. The aim of the research is to develop a model for the analysis of physical degradation of railway tracks in response to changes in traffic parameters, especially increased axle loads and train speeds. This research has developed an integrated track degradation model (ITDM) by integrating several models into a comprehensive framework. Mechanistic relationships for track degradation hav~ ?een used wherever possible in each of the models contained in ITDM. This overcc:mes the deficiency of the traditional statistical track models which rely heavily on historical degradation data, which is generally not available in many railway systems. In addition statistical models lack the flexibility of incorporating future changes in traffic patterns or maintenance practices. The research starts with reviewing railway track related studies both in Australia and overseas to develop a comprehensive understanding of track performance under various traffic conditions. Existing railway related models are then examined for their suitability for track degradation analysis for Australian situations. The ITDM model is subsequently developed by modifying suitable existing models, and developing new models where necessary. The ITDM model contains four interrelated submodels for rails, sleepers, ballast and subgrade, and track modulus. The rail submodel is for rail wear analysis and is developed from a theoretical concept. The sleeper submodel is for timber sleepers damage prediction. The submodel is developed by modifying and extending an existing model developed elsewhere. The submodel has also incorporated an analysis for the likelihood of concrete sleeper cracking. The ballast and subgrade submodel is evolved from a concept developed in the USA. Substantial modifications and improvements have been made. The track modulus submodel is developed from a conceptual method. Corrections for more global track conditions have been made. The integration of these submodels into one comprehensive package has enabled the interaction between individual track components to be taken into account. This is done by calculating wheel load distribution with time and updating track conditions periodically in the process of track degradation simulation. A Windows-based computer program ~ssociated with ITDM has also been developed. The program enables the user to carry out analysis of degradation of individual track components and to investigate the inter relationships between these track components and their deterioration. The successful implementation of this research has provided essential information for prediction of increased maintenance as a consequence of railway trackdegradation. The model, having been presented at various conferences and seminars, has attracted wide interest. It is anticipated that the model will be put into practical use among Australian railways, enabling track maintenance planning to be optimized and potentially saving Australian railway systems millions of dollars in operating costs.