850 resultados para Model Identification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper points out a serious flaw in dynamic multivariate statistical process control (MSPC). The principal component analysis of a linear time series model that is employed to capture auto- and cross-correlation in recorded data may produce a considerable number of variables to be analysed. To give a dynamic representation of the data (based on variable correlation) and circumvent the production of a large time-series structure, a linear state space model is used here instead. The paper demonstrates that incorporating a state space model, the number of variables to be analysed dynamically can be considerably reduced, compared to conventional dynamic MSPC techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the two-stage stepwise identification for a class of nonlinear dynamic systems that can be described by linear-in-the-parameters models, and the model has to be built from a very large pool of basis functions or model terms. The main objective is to improve the compactness of the model that is obtained by the forward stepwise methods, while retaining the computational efficiency. The proposed algorithm first generates an initial model using a forward stepwise procedure. The significance of each selected term is then reviewed at the second stage and all insignificant ones are replaced, resulting in an optimised compact model with significantly improved performance. The main contribution of this paper is that these two stages are performed within a well-defined regression context, leading to significantly reduced computational complexity. The efficiency of the algorithm is confirmed by the computational complexity analysis, and its effectiveness is demonstrated by the simulation results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conventional operationalisation of the concept of party identification is not appropriate for the multiparty setting. I offer new measures that facilitate multiple, and negative as well as positive, identities. Using survey evidence from Northern Ireland, these new measures are validated in a number of ways and their role in a comprehensive model of voting is illustrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Langerhans cells (LCs) are antigen-presenting cells that reside in the epidermis of the skin and traffic to lymph nodes (LNs). The general role of these cells in skin immune responses is not clear because distinct models of LC depletion resulted in opposite conclusions about their role in contact hypersensitivity (CHS) responses. While comparing these models, we discovered a novel population of LCs that resides in the dermis and does not represent migrating epidermal LCs, as previously thought. Unlike epidermal LCs, dermal Langerin(+) dendritic cells (DCs) were radiosensitive and displayed a distinct cell surface phenotype. Dermal Langerin(+) DCs migrate from the skin to the LNs after inflammation and in the steady state, and represent the majority of Langerin(+) DCs in skin draining LNs. Both epidermal and dermal Langerin(+) DCs were depleted by treatment with diphtheria toxin in Lang-DTREGFP knock-in mice. In contrast, transgenic hLang-DTA mice lack epidermal LCs, but have normal numbers of dermal Langerin(+) DCs. CHS responses were abrogated upon depletion of both epidermal and dermal LCs, but were unaffected in the absence of only epidermal LCs. This suggests that dermal LCs can mediate CHS and provides an explanation for previous differences observed in the two-model systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Signal transduction pathways describe the dynamics of cellular response to input signalling molecules at receptors on the cell membrane. The Mitogen-Activated Protein Kinase (MAPK) cascade is one of such pathways that are involved in many important cellular processes including cell growth and proliferation. This paper describes a black-box model of this pathway created using an advanced two-stage identification algorithm. Identification allows us to capture the unique features and dynamics of the pathway and also opens up the possibility of regulatory control design. In the approach described, an optimal model is obtained by performing model subset selection in two stages, where the terms are first determined by a forward selection method and then modified using a backward selection model refinement. The simulation results demonstrate that the model selected using the two-stage algorithm performs better than with the forward selection method alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The divide-and-conquer approach of local model (LM) networks is a common engineering approach to the identification of a complex nonlinear dynamical system. The global representation is obtained from the weighted sum of locally valid, simpler sub-models defined over small regions of the operating space. Constructing such networks requires the determination of appropriate partitioning and the parameters of the LMs. This paper focuses on the structural aspect of LM networks. It compares the computational requirements and performances of the Johansen and Foss (J&F) and LOLIMOT tree-construction algorithms. Several useful and important modifications to each algorithm are proposed. The modelling performances are evaluated using real data from a pilot plant of a pH neutralization process. Results show that while J&F achieves a more accurate nonlinear representation of the pH process, LOLIMOT requires significantly less computational effort.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucose-dependent insulinotropic polypeptide receptor (GIPR), a member of family B of the G-protein coupled receptors, is a potential therapeutic target for which discovery of nonpeptide ligands is highly desirable. Structure-activity relationship studies indicated that the N-terminal part of glucose-dependent insulinotropic polypeptide (GIP) is crucial for biological activity. Here, we aimed at identification of residues in the GIPR involved in functional interaction with N-terminal moiety of GIP. A homology model of the transmembrane core of GIPR was constructed, whereas a three-dimensional model of the complex formed between GIP and the N-terminal extracellular domain of GIPR was taken from the crystal structure. The latter complex was docked to the transmembrane domains of GIPR, allowing in silico identification of putative residues of the agonist binding/activation site. All mutants were expressed at the surface of human embryonic kidney 293 cells as indicated by flow cytometry and confocal microscopy analysis of fluorescent GIP binding. Mutation of residues Arg183, Arg190, Arg300, and Phe357 caused shifts of 76-, 71-, 42-, and 16-fold in the potency to induce cAMP formation, respectively. Further characterization of these mutants, including tests with alanine-substituted GIP analogs, were in agreement with interaction of Glu3 in GIP with Arg183 in GIPR. Furthermore, they strongly supported a binding mode of GIP to GIPR in which the N-terminal moiety of GIP was sited within transmembrane helices (TMH) 2, 3, 5, and 6 with biologically crucial Tyr1 interacting with Gln224 (TMH3), Arg300 (TMH5), and Phe357 (TMH6). These data represent an important step toward understanding activation of GIPR by GIP, which should facilitate the rational design of therapeutic agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The identification of nonlinear dynamic systems using radial basis function (RBF) neural models is studied in this paper. Given a model selection criterion, the main objective is to effectively and efficiently build a parsimonious compact neural model that generalizes well over unseen data. This is achieved by simultaneous model structure selection and optimization of the parameters over the continuous parameter space. It is a mixed-integer hard problem, and a unified analytic framework is proposed to enable an effective and efficient two-stage mixed discrete-continuous; identification procedure. This novel framework combines the advantages of an iterative discrete two-stage subset selection technique for model structure determination and the calculus-based continuous optimization of the model parameters. Computational complexity analysis and simulation studies confirm the efficacy of the proposed algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential for coupling technologies to deliver new, improved forms of bioanalysis is still in its infancy. We review a number of examples in which coupling has been successful, with special emphasis on combining surface-plasmon-resonance biosensors with mass spectrometry. We give an overview of current progress towards combining biosensor-based bioanalysis with chemical analysis for confirmation of paralytic shellfish poisons that are marine toxins. This comprehensive approach could be an alternative to the official methods currently used (e.g., animal testing and high-performance liquid chromatography with fluorescence detection) and could serve as a model for many more such applications. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TRIP-Br proteins area novel family of transcriptional coregulators involved in E2F-mediated cell cycle progression. Three of the four mammalian members of TRIP-Br family, including TRIP-Br1, are known oncogenes. We now report the identification of the Bot regulatory subunit of serine/threonine protein phosphatase 2A (MA) as a novel TRIP-Br1 interactor, based on an affinity binding assay coupled with mass spectrometry. A GST-TRIP-Br1 fusion protein associates with catalytically active PP2A-AB alpha C holoenzyme in vitro. Coimmunoprecipitation confirms this association in vivo. Immunofluorescence staining with a monoclonal antibody against TRIP-Br1 reveals that endogenous TRIP-Br1 and PP2A-B alpha colocalize mainly in the cytoplasm. Consistently, immunoprecipitation followed by immunodetection with anti-phosphoserine antibody suggest that TRIP-Br1 exists in a serine-phosphorylated form. Inhibition of PP2A activity by okadaic acid or transcriptional silencing of the PP2A catalytic subunit by small interfering RNA results in downregulation of total TRIP-Br1 protein levels but upregulation of serine-phosphorylated TRIP-Br1. Overexpression of PP2A catalytic subunit increases TRIP-Br1 protein levels and TRIP-Br1 co-activated E2F1/DP1 transcription. Our data support a model in which association between PP2A-AB alpha C holoenzyme and TRIP-Br1 in vivo in mammalian cells represents a novel mechanism for regulating the level of TRIP-Br1 protooncoprotein. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We aimed to develop a clinically relevant delayed union/non-union fracture model to evaluate a cell therapy intervention repair strategy. Histology, three-dimensional (3D) micro-computed tomography (micro-CT) imaging and mechanical testing were utilized to develop an analytical protocol for qualitative and quantitative assessment of fracture repair. An open femoral diaphyseal osteotomy, combined with periosteal diathermy and endosteal excision, was held in compression by a four pin unilateral external fixator. Three delayed union/non-union fracture groups established at 6 weeks-(a) a control group, (b) a cell therapy group, and (c) a group receiving phosphate-buffered saline (PBS) injection alone-were examined subsequently at 8 and 14 weeks. The histological response was combined fibrous and cartilaginous non-unions in groups A and B with fibrous non-unions in group C. Mineralized callus volume/total volume percentage showed no statistically significant differences between groups. Endosteal calcified tissue volume/endosteal tissue volume, at the center of the fracture site, displayed statistically significant differences between 8 and 14 weeks for cell and PBS intervention groups but not for the control group. The percentage load to failure was significantly lower in the control and cell treatment groups than in the PBS alone group. High-resolution micro-CT imaging provides a powerful tool to augment characterization of repair in delayed union/non-union fractures together with outcomes such as histology and mechanical strength measurement. Accurate, nondestructive, 3D identification of mineralization progression in repairing fractures is enabled in the presence or absence of intervention strategies. (c) 2007 Orthopaedic Research Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To improve the performance of classification using Support Vector Machines (SVMs) while reducing the model selection time, this paper introduces Differential Evolution, a heuristic method for model selection in two-class SVMs with a RBF kernel. The model selection method and related tuning algorithm are both presented. Experimental results from application to a selection of benchmark datasets for SVMs show that this method can produce an optimized classification in less time and with higher accuracy than a classical grid search. Comparison with a Particle Swarm Optimization (PSO) based alternative is also included.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Red algae (Rhodophyta) are an ancient group with unusual morphological, biochemical, and life-history features including a complete absence of flagella. Although the red algae present many opportunities for studying speciation, this has rarely been explicitly addressed. Here, we examine an aspect of paternal gene flow by determining fertilization success of female Neosiphonia harveyi (Ceramiales), which retains a morphological record of all successful and unsuccessful female gametes. High fertilization rates were observed except when there were no males at all within the tidepool, or in a submerged marina environment. Small numbers of reproductive males were able to saturate fertilization rates, suggesting that limited availability of sperm may be less significant in red algae than previously thought. In another member of the Ceramiales, Antithamnion, relatively large chromosomes permit karyological identification of polyploids. The Western Pacific species Antithamnion sparsum is closely related to the diploid species Antithamnion defectum, known only from the Eastern Pacific, and appears to have evolved from it. Molecular evidence suggests that A. sparsum is an autopolyploid, and that the European species known as Antithamnion densum is divergent from the A. sparsum/defectum complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We characterized Fas immunoreactivity, functionality and its role in the response to mitomycin-C (MMC) chemotherapy in vitro in cell lines and in vivo in bladder washings from 23 transitional cell carcinoma of the bladder (TCCB) patients, harvested prior to and during MMC intravesical treatment. Having established the importance of functional Fas, we investigated the methylation and exon 9 mutation as mechanisms of Fas silencing in TCCB. For the first time, we report p53 up-regulation in 9/14 and Fas up-regulation in 7/9 TCCB patients during intravesical MMC treatment. Fas immunoreactivity was strong in the TCCB cell line T24 and in 17/20 (85%) tumor samples from patients with advanced TCCB. T24 and HT1376 cells were resistant to MMC and recombinant Fas ligand, whilst RT4 cells were responsive to Fas ligand and MMC. Using RT4 cells as a model, siRNA targeting p53 significantly reduced MMC-induced p53 and Fas up-regulation and stable DN-FADD transfection decreased MMC-induced apoptosis, suggesting that functional Fas enhances chemotherapy responses in a p53-dependent manner. In HT1376 cells, 5-aza-2-deoxycytidine (12 µM) induced Fas immunoreactivity and reversed methylation at CpG site -548 within the Fas promoter. This site was methylated in 13/24 (54%) TCCB patient samples assessed using Methylation-Specific Polymerase Chain Reaction. There was no methylation at either the p53 enhancer region within the first intron or at the SP-1 binding region in the promoter and no mutation within exon 9 in tumor DNA extracted from 38 patients. Methylation at CpG site -548 is a potential target for demethylating drugs.