843 resultados para Mobile App Design
Resumo:
Fast and efficient channel estimation is key to achieving high data rate performance in mobile and vehicular communication systems, where the channel is fast time-varying. To this end, this work proposes and optimizes channel-dependent training schemes for reciprocal Multiple-Input Multiple-Output (MIMO) channels with beamforming (BF) at the transmitter and receiver. First, assuming that Channel State Information (CSI) is available at the receiver, a channel-dependent Reverse Channel Training (RCT) signal is proposed that enables efficient estimation of the BF vector at the transmitter with a minimum training duration of only one symbol. In contrast, conventional orthogonal training requires a minimum training duration equal to the number of receive antennas. A tight approximation to the capacity lower bound on the system is derived, which is used as a performance metric to optimize the parameters of the RCT. Next, assuming that CSI is available at the transmitter, a channel-dependent forward-link training signal is proposed and its power and duration are optimized with respect to an approximate capacity lower bound. Monte Carlo simulations illustrate the significant performance improvement offered by the proposed channel-dependent training schemes over the existing channel-agnostic orthogonal training schemes.
Resumo:
Authentication protocols are very much essential for secure communication in mobile ad hoc networks (MANETs). A number of authentication protocols for MANETs have been proposed in the literature which provide the basic authentication service while trying to optimize their performance and resource consumption parameters. A problem with most of these protocols is that the underlying networking environment on which they are applicable have been left unspecified. As a result, lack of specifications about the networking environments applicable to an authentication protocol for MANETs can mislead about the performance and the applicability of the protocol. In this paper, we first characterize networking environment for a MANET as its 'Membership Model' which is defined as a set of specifications related to the 'Membership Granting Server' (MGS) and the 'Membership Set Pattern' (MSP) of the MANET. We then identify various types of possible membership models for a MANET. In order to illustrate that while designing an authentication protocol for a MANET, it is very much necessary to consider the underlying membership model of the MANET, we study a set of six representative authentication protocols, and analyze their applicability for the membership models as enumerated in this paper. The analysis shows that the same protocol may not perform equally well in all membership models. In addition, there may be membership models which are important from the point of view of users, but for which no authentication protocol is available.
Resumo:
In this paper we present a combination of technologies to provide an Energy-on-Demand (EoD) service to enable low cost innovation suitable for microgrid networks. The system is designed around the low cost and simple Rural Energy Device (RED) Box which in combination with Short Message Service (SMS) communication methodology serves as an elementary proxy for Smart meters which are typically used in urban settings. Further, customer behavior and familiarity in using such devices based on mobile experience has been incorporated into the design philosophy. Customers are incentivized to interact with the system thus providing valuable behavioral and usage data to the Utility Service Provider (USP). Data that is collected over time can be used by the USP for analytics envisioned by using remote computing services known as cloud computing service. Cloud computing allows for a sharing of computational resources at the virtual level across several networks. The customer-system interaction is facilitated by a third party Telecom Service provider (TSP). The approximate cost of the RED Box is envisaged to be under USD 10 on production scale.
Resumo:
Acoustic rangerfinders are a promising technology for accurate proximity detection, a critical requirement for many emerging mobile computing applications. While state-of-the-art systems deliver robust ranging performance, the computational intensiveness of their detection mechanism expedites the energy depletion of the associated devices that are typically powered by batteries. The contribution of this article is fourfold. First, it outlines the common factors that are important for ranging. Second, it presents a review of acoustic rangers and identifies their potential problems. Third, it explores the design of an information processing framework based on sparse representation that could potentially address existing challenges, especially for mobile devices. Finally, it presents mu-BeepBeep: a low energy acoustic ranging service for mobile devices, and empirically evaluates its benefits.
Resumo:
A wheeled mobile robot (WMR) will move on an uneven terrain without slip if its torus-shaped wheels tilt in a lateral direction. An independent two degree-of-freedom (DOF) suspension is required to maintain contact with uneven terrain and for lateral tilting. This article deals with the modeling and simulation of a three-wheeled mobile robot with torus-shaped wheels and four novel two-DOF suspension mechanism concepts. Simulations are performed on an uneven terrain for three representative pathsa straight line, a circular, and an S'-shaped path. Simulations show that a novel concept using double four-bar mechanism performs better than the other three concepts.
Resumo:
In this paper, sensing coverage by wireless camera-embedded sensor networks (WCSNs), a class of directional sensors is studied. The proposed work facilitates the autonomous tuning of orientation parameters and displacement of camera-sensor nodes in the bounded field of interest (FoI), where the network coverage in terms of every point in the FoI is important. The proposed work is first of its kind to study the problem of maximizing coverage of randomly deployed mobile WCSNs which exploits their mobility. We propose an algorithm uncovered region exploration algorithm (UREA-CS) that can be executed in centralized and distributed modes. Further, the work is extended for two special scenarios: 1) to suit autonomous combing operations after initial random WCSN deployments and 2) to improve the network coverage with occlusions in the FoI. The extensive simulation results show that the performance of UREA-CS is consistent, robust, and versatile to achieve maximum coverage, both in centralized and distributed modes. The centralized and distributed modes are further analyzed with respect to the computational and communicational overheads.
Resumo:
It is known in literature that a wheeled mobile robot (WMR) with fixed length axle will slip on an uneven terrain. One way to avoid wheel slip is to use a torus-shaped wheel with lateral tilt capability which allows the distance between the wheel-ground contact points to change even with a fixed length axle. Such an arrangement needs a two degree-of-freedom (DOF) suspension for the vertical and lateral tilting motion of the wheel. In this paper modeling, simulation, design and experimentation with a three-wheeled mobile robot, with torus-shaped wheels and a novel two DOF suspension allowing independent lateral tilt and vertical motion, is presented. The suspension is based on a four-bar mechanism and is called the double four-bar (D4Bar) suspension. Numerical simulations show that the three-wheeled mobile robot can traverse uneven terrain with low wheel slip. Experiments with a prototype three-wheeled mobile robot moving on a constructed uneven terrain along a straight line, a circular arc and a path representing a lane change, also illustrate the low slip capability of the three-wheeled mobile robot with the D4Bar suspension. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The nodes with dynamicity, and management without administrator are key features of mobile ad hoc networks (1VIANETs). Increasing resource requirements of nodes running different applications, scarcity of resources, and node mobility in MANETs are the important issues to be considered in allocation of resources. Moreover, management of limited resources for optimal allocation is a crucial task. In our proposed work we discuss a design of resource allocation protocol and its performance evaluation. The proposed protocol uses both static and mobile agents. The protocol does the distribution and parallelization of message propagation (mobile agent with information) in an efficient way to achieve scalability and speed up message delivery to the nodes in the sectors of the zones of a MANET. The protocol functionality has been simulated using Java Agent Development Environment (JADE) Framework for agent generation, migration and communication. A mobile agent migrates from central resource rich node with message and navigate autonomously in the zone of network until the boundary node. With the performance evaluation, it has been concluded that the proposed protocol consumes much less time to allocate the required resources to the nodes under requirement, utilize less network resources and increase the network scalability. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Este Proyecto Fin de Carrera ha realizado el diseño y la implementación de la aplicación social Faborez, para la petición de favores instantáneos. El desarrollo se ha realizado en un marco de integración y colaboración directa de los usuarios en el proyecto, partiendo de un Minimum Viable Product inicial e integrando su feedback en la progresiva ampliación de las características del servicio. En implementación se han utilizado tecnologías emergentes, todas de código abierto: MongoDB y Redis para el almacenamiento de datos, Sails.js como plataforma base para el backend y desarrollando como clientes una aplicación web y otra Android nativa.
Resumo:
The two most important digital-system design goals today are to reduce power consumption and to increase reliability. Reductions in power consumption improve battery life in the mobile space and reductions in energy lower operating costs in the datacenter. Increased robustness and reliability shorten down time, improve yield, and are invaluable in the context of safety-critical systems. While optimizing towards these two goals is important at all design levels, optimizations at the circuit level have the furthest reaching effects; they apply to all digital systems. This dissertation presents a study of robust minimum-energy digital circuit design and analysis. It introduces new device models, metrics, and methods of calculation—all necessary first steps towards building better systems—and demonstrates how to apply these techniques. It analyzes a fabricated chip (a full-custom QDI microcontroller designed at Caltech and taped-out in 40-nm silicon) by calculating the minimum energy operating point and quantifying the chip’s robustness in the face of both timing and functional failures.
Resumo:
Em meio à rápida propagação de tecnologias de mídia que tornam possível produzir, arquivar, se apropriar e recircular conteúdo informacional, uma cultura participativa vem emergindo nos dias atuais. Uma lógica de colaboração se faz presente, viabilizada por ferramentas técnicas que estruturam o conhecimento em rede. Nesse contexto, o museu, enquanto agência de representação sociocultural, se esforça no sentido de atualizar-se. Nesta dissertação, sugere-se que a interação participativa de caráter social é um caminho para renovar e ampliar as narrativas culturais elaboradas pelos museus, em sua relação comunicacional com o público. Foi elaborado, então, o sistema Revelar: um modelo preliminar que se propõe a investigar o design de participação em contexto museológico. O sistema, que tem como palco de ações o complexo do Jardim Botânico do Rio de Janeiro, pressupõe a participação de estudantes de Ensino Médio em uma atividade programada pela equipe do Museu do Meio Ambiente. A matéria de contribuição dos alunos participantes é a fotografia produzida a partir do uso de dispositivos móveis
Resumo:
Chapter 6 A Population Perspective on Mobile Phone Related Tasks M. Bradley, S. Waller, J. Goodman-Deane, l. Hosking, R. Tenneti, PM Langdon and PJ Clarkson 6.1 Introduction For design to be truly inclusive, it needs to take into ...
Resumo:
Users’ initial perceptions of their competence are key motivational factors for further use. However, initial tasks on a mobile operating system (OS) require setup procedures, which are currently largely inconsistent, do not provide users with clear, visible and immediate feedback on their actions, and require significant adjustment time for first-time users. This paper reports on a study with ten users, carried out to better understand how both prior experience and initial interaction with two touchscreen mobile interfaces (Apple iOS and Google Android) affected setup task performance and motivation. The results show that the reactions to setup on mobile interfaces appear to be partially dependent on which device was experienced first. Initial experience with lower-complexity devices improves performance on higher-complexity devices, but not vice versa. Based on these results, the paper proposes six guidelines for designers to design more intuitive and motivating user interfaces (UI) for setup procedures. The preliminary results indicate that these guidelines can contribute to the design of more inclusive mobile platforms and further work to validate these findings is proposed.