975 resultados para Mixed integer nonlinear program


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider the problem of topology design for optical networks. We investigate the problem of selecting switching sites to minimize total cost of the optical network. The cost of an optical network can be expressed as a sum of three main factors: the site cost, the link cost, and the switch cost. To the best of our knowledge, this problem has not been studied in its general form as investigated in this paper. We present a mixed integer quadratic programming (MIQP) formulation of the problem to find the optimal value of the total network cost. We also present an efficient heuristic to approximate the solution in polynomial time. The experimental results show good performance of the heuristic. The value of the total network cost computed by the heuristic varies within 2% to 21% of its optimal value in the experiments with 10 nodes. The total network cost computed by the heuristic for 51% of the experiments with 10 node network topologies varies within 8% of its optimal value. We also discuss the insight gained from our experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with a problem of mixed integer optimization model applied to production planning of a real world factory that aims for hydraulic hose production. To optimize production planning, a mathematic model of MILP Mixed Integer Linear Programming, so that, along with the Analytic Hierarchy process method, would be possible to create a hierarchical structure of the most import criteria for production planning, thus finding through a solving software the optimum hose attribution to its respective machine. The hybrid modeling of Analytic Hierarchy Process along with Linear Programming is the focus of this work. The results show that using this method we could unite factory reality and quantitative analysis and had success on improving performance of production planning efficiency regarding product delivery and optimization of the production flow

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article describes a real-world production planning and scheduling problem occurring at an integrated pulp and paper mill (P&P) which manufactures paper for cardboard out of produced pulp. During the cooking of wood chips in the digester, two by-products are produced: the pulp itself (virgin fibers) and the waste stream known as black liquor. The former is then mixed with recycled fibers and processed in a paper machine. Here, due to significant sequence-dependent setups in paper type changeovers, sizing and sequencing of lots have to be made simultaneously in order to efficiently use capacity. The latter is converted into electrical energy using a set of evaporators, recovery boilers and counter-pressure turbines. The planning challenge is then to synchronize the material flow as it moves through the pulp and paper mills, and energy plant, maximizing customer demand (as backlogging is allowed), and minimizing operation costs. Due to the intensive capital feature of P&P, the output of the digester must be maximized. As the production bottleneck is not fixed, to tackle this problem we propose a new model that integrates the critical production units associated to the pulp and paper mills, and energy plant for the first time. Simple stochastic mixed integer programming based local search heuristics are developed to obtain good feasible solutions for the problem. The benefits of integrating the three stages are discussed. The proposed approaches are tested on real-world data. Our work may help P&P companies to increase their competitiveness and reactiveness in dealing with demand pattern oscillations. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integrated production scheduling and lot-sizing problem in a flow shop environment consists of establishing production lot sizes and allocating machines to process them within a planning horizon in a production line with machines arranged in series. The problem considers that demands must be met without backlogging, the capacity of the machines must be respected, and machine setups are sequence-dependent and preserved between periods of the planning horizon. The objective is to determine a production schedule to minimise the setup, production and inventory costs. A mathematical model from the literature is presented, as well as procedures for obtaining feasible solutions. However, some of the procedures have difficulty in obtaining feasible solutions for large-sized problem instances. In addition, we address the problem using different versions of the Asynchronous Team (A-Team) approach. The procedures were compared with literature heuristics based on Mixed Integer Programming. The proposed A-Team procedures outperformed the literature heuristics, especially for large instances. The developed methodologies and the results obtained are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of solving the Optimal Power Flow problem is to determine the optimal state of an electric power transmission system, that is, the voltage magnitude and phase angles and the tap ratios of the transformers that optimize the performance of a given system, while satisfying its physical and operating constraints. The Optimal Power Flow problem is modeled as a large-scale mixed-discrete nonlinear programming problem. This paper proposes a method for handling the discrete variables of the Optimal Power Flow problem. A penalty function is presented. Due to the inclusion of the penalty function into the objective function, a sequence of nonlinear programming problems with only continuous variables is obtained and the solutions of these problems converge to a solution of the mixed problem. The obtained nonlinear programming problems are solved by a Primal-Dual Logarithmic-Barrier Method. Numerical tests using the IEEE 14, 30, 118 and 300-Bus test systems indicate that the method is efficient. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We deal with the optimization of the production of branched sheet metal products. New forming techniques for sheet metal give rise to a wide variety of possible profiles and possible ways of production. In particular, we show how the problem of producing a given profile geometry can be modeled as a discrete optimization problem. We provide a theoretical analysis of the model in order to improve its solution time. In this context we give the complete convex hull description of some substructures of the underlying polyhedron. Moreover, we introduce a new class of facet-defining inequalities that represent connectivity constraints for the profile and show how these inequalities can be separated in polynomial time. Finally, we present numerical results for various test instances, both real-world and academic examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a general scheme for generating extra cuts during the execution of a Benders decomposition algorithm is presented. These cuts are based on feasible and infeasible master problem solutions generated by means of a heuristic. This article includes general guidelines and a case study with a fixed charge network design problem. Computational tests with instances of this problem show the efficiency of the strategy. The most important aspect of the proposed ideas is their generality, which allows them to be used in virtually any Benders decomposition implementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Setup operations are significant in some production environments. It is mandatory that their production plans consider some features, as setup state conservation across periods through setup carryover and crossover. The modelling of setup crossover allows more flexible decisions and is essential for problems with long setup times. This paper proposes two models for the capacitated lot-sizing problem with backlogging and setup carryover and crossover. The first is in line with other models from the literature, whereas the second considers a disaggregated setup variable, which tracks the starting and completion times of the setup operation. This innovative approach permits a more compact formulation. Computational results show that the proposed models have outperformed other state-of-the-art formulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents hybrid Constraint Programming (CP) and metaheuristic methods for the solution of Large Scale Optimization Problems; it aims at integrating concepts and mechanisms from the metaheuristic methods to a CP-based tree search environment in order to exploit the advantages of both approaches. The modeling and solution of large scale combinatorial optimization problem is a topic which has arisen the interest of many researcherers in the Operations Research field; combinatorial optimization problems are widely spread in everyday life and the need of solving difficult problems is more and more urgent. Metaheuristic techniques have been developed in the last decades to effectively handle the approximate solution of combinatorial optimization problems; we will examine metaheuristics in detail, focusing on the common aspects of different techniques. Each metaheuristic approach possesses its own peculiarities in designing and guiding the solution process; our work aims at recognizing components which can be extracted from metaheuristic methods and re-used in different contexts. In particular we focus on the possibility of porting metaheuristic elements to constraint programming based environments, as constraint programming is able to deal with feasibility issues of optimization problems in a very effective manner. Moreover, CP offers a general paradigm which allows to easily model any type of problem and solve it with a problem-independent framework, differently from local search and metaheuristic methods which are highly problem specific. In this work we describe the implementation of the Local Branching framework, originally developed for Mixed Integer Programming, in a CP-based environment. Constraint programming specific features are used to ease the search process, still mantaining an absolute generality of the approach. We also propose a search strategy called Sliced Neighborhood Search, SNS, that iteratively explores slices of large neighborhoods of an incumbent solution by performing CP-based tree search and encloses concepts from metaheuristic techniques. SNS can be used as a stand alone search strategy, but it can alternatively be embedded in existing strategies as intensification and diversification mechanism. In particular we show its integration within the CP-based local branching. We provide an extensive experimental evaluation of the proposed approaches on instances of the Asymmetric Traveling Salesman Problem and of the Asymmetric Traveling Salesman Problem with Time Windows. The proposed approaches achieve good results on practical size problem, thus demonstrating the benefit of integrating metaheuristic concepts in CP-based frameworks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we address a collection of Network Design problems which are strongly motivated by applications from Telecommunications, Logistics and Bioinformatics. In most cases we justify the need of taking into account uncertainty in some of the problem parameters, and different Robust optimization models are used to hedge against it. Mixed integer linear programming formulations along with sophisticated algorithmic frameworks are designed, implemented and rigorously assessed for the majority of the studied problems. The obtained results yield the following observations: (i) relevant real problems can be effectively represented as (discrete) optimization problems within the framework of network design; (ii) uncertainty can be appropriately incorporated into the decision process if a suitable robust optimization model is considered; (iii) optimal, or nearly optimal, solutions can be obtained for large instances if a tailored algorithm, that exploits the structure of the problem, is designed; (iv) a systematic and rigorous experimental analysis allows to understand both, the characteristics of the obtained (robust) solutions and the behavior of the proposed algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research for exact solutions of mixed integer problems is an active topic in the scientific community. State-of-the-art MIP solvers exploit a floating- point numerical representation, therefore introducing small approximations. Although such MIP solvers yield reliable results for the majority of problems, there are cases in which a higher accuracy is required. Indeed, it is known that for some applications floating-point solvers provide falsely feasible solutions, i.e. solutions marked as feasible because of approximations that would not pass a check with exact arithmetic and cannot be practically implemented. The framework of the current dissertation is SCIP, a mixed integer programs solver mainly developed at Zuse Institute Berlin. In the same site we considered a new approach for exactly solving MIPs. Specifically, we developed a constraint handler to plug into SCIP, with the aim to analyze the accuracy of provided floating-point solutions and compute exact primal solutions starting from floating-point ones. We conducted a few computational experiments to test the exact primal constraint handler through the adoption of two main settings. Analysis mode allowed to collect statistics about current SCIP solutions' reliability. Our results confirm that floating-point solutions are accurate enough with respect to many instances. However, our analysis highlighted the presence of numerical errors of variable entity. By using the enforce mode, our constraint handler is able to suggest exact solutions starting from the integer part of a floating-point solution. With the latter setting, results show a general improvement of the quality of provided final solutions, without a significant loss of performances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clustered data analysis is characterized by the need to describe both systematic variation in a mean model and cluster-dependent random variation in an association model. Marginalized multilevel models embrace the robustness and interpretations of a marginal mean model, while retaining the likelihood inference capabilities and flexible dependence structures of a conditional association model. Although there has been increasing recognition of the attractiveness of marginalized multilevel models, there has been a gap in their practical application arising from a lack of readily available estimation procedures. We extend the marginalized multilevel model to allow for nonlinear functions in both the mean and association aspects. We then formulate marginal models through conditional specifications to facilitate estimation with mixed model computational solutions already in place. We illustrate this approach on a cerebrovascular deficiency crossover trial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Im operativen Betrieb einer Stückgutspeditionsanlage entscheidet der Betriebslenker bzw. der Disponent in einem ersten Schritt darüber, an welche Tore die Fahrzeuge zur Be- und Entladung andocken sollen. Darüber hinaus muss er für jede Tour ein Zeitfenster ausweisen innerhalb dessen sie das jeweilige Tor belegt. Durch die örtliche und zeitliche Fahrzeug-Tor-Zuordnung wird der für den innerbetrieblichen Umschlagprozess erforderliche Ressourcenaufwand in Form von zu fahrenden Wegstrecken oder aber Gabelstaplerstunden bestimmt. Ein Ziel der Planungsaufgabe ist somit, die Zuordnung der Fahrzeuge an die Tore so vorzunehmen, dass dabei minimale innerbetriebliche Wegstrecken entstehen. Dies führt zu einer minimalen Anzahl an benötigten Umschlagmittelressourcen. Darüber hinaus kann es aber auch zweckmäßig sein, die Fahrzeuge möglichst früh an die Tore anzudocken. Jede Tour verfügt über einen individuellen Fahrplan, der Auskunft über den Ankunftszeitpunkt sowie den Abfahrtszeitpunkt der jeweiligen Tour von der Anlage gibt. Nur innerhalb dieses Zeitfensters darf der Disponent die Tour einem der Tore zuweisen. Geschieht die Zuweisung nicht sofort nach Ankunft in der Anlage, so muss das Fahrzeug auf einer Parkfläche warten. Eine Minimierung der Wartezeiten ist wünschenswert, damit das Gelände der Anlage möglichst nicht durch zuviele Fahrzeuge gleichzeitig belastet wird. Es kann vor allem aber auch im Hinblick auf das Reservieren der Tore für zeitkritische Touren sinnvoll sein, Fahrzeuge möglichst früh abzufertigen. Am Lehrstuhl Verkehrssysteme und -logistik (VSL) der Universität Dortmund wurde die Entscheidungssituation im Rahmen eines Forschungsprojekts bei der Stiftung Industrieforschung in Anlehnung an ein zeitdiskretes Mehrgüterflussproblem mit unsplittable flow Bedingungen modelliert. Die beiden Zielsetzungen wurden dabei in einer eindimensionalen Zielfunktion integriert. Das resultierende Mixed Integer Linear Programm (MILP) wurde programmiert und für mittlere Szenarien durch Eingabe in den Optimization Solver CPlex mit dem dort implementierten exakten Branch-and-Cut Verfahren gelöst. Parallel wurde im Rahmen einer Kooperation zwischen dem Lehrstuhl VSL und dem Unternehmen hafa Docking Systems, einem der weltweit führenden Tor und Rampenhersteller, für die gleiche Planungsaufgabe ein heuristisches Scheduling Verfahren sowie ein Dispositionsleitstand namens LoadDock Navigation entwickelt. Der Dispositionsleitstand dient der optimalen Steuerung der Torbelegungen in logistischen Anlagen. In dem Leitstand wird planerische Intelligenz in Form des heuristischen Schedulingverfahrens, technische Neuerungen in der Rampentechnik in Form von Sensoren und das Expertenwissen des Disponenten in einem Tool verbunden. Das mathematische Modell sowie der Prototyp mit der integrierten Heuristik werden im Rahmen dieses Artikels vorgestellt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In reverse logistics networks, products (e.g., bottles or containers) have to be transported from a depot to customer locations and, after use, from customer locations back to the depot. In order to operate economically beneficial, companies prefer a simultaneous delivery and pick-up service. The resulting Vehicle Routing Problem with Simultaneous Delivery and Pick-up (VRPSDP) is an operational problem, which has to be solved daily by many companies. We present two mixed-integer linear model formulations for the VRPSDP, namely a vehicle-flow and a commodity-flow model. In order to strengthen the models, domain-reducing preprocessing techniques, and effective cutting planes are outlined. Symmetric benchmark instances known from the literature as well as new asymmetric instances derived from real-world problems are solved to optimality using CPLEX 12.1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In process industries, make-and-pack production is used to produce food and beverages, chemicals, and metal products, among others. This type of production process allows the fabrication of a wide range of products in relatively small amounts using the same equipment. In this article, we consider a real-world production process (cf. Honkomp et al. 2000. The curse of reality – why process scheduling optimization problems are diffcult in practice. Computers & Chemical Engineering, 24, 323–328.) comprising sequence-dependent changeover times, multipurpose storage units with limited capacities, quarantine times, batch splitting, partial equipment connectivity, and transfer times. The planning problem consists of computing a production schedule such that a given demand of packed products is fulfilled, all technological constraints are satisfied, and the production makespan is minimised. None of the models in the literature covers all of the technological constraints that occur in such make-and-pack production processes. To close this gap, we develop an efficient mixed-integer linear programming model that is based on a continuous time domain and general-precedence variables. We propose novel types of symmetry-breaking constraints and a preprocessing procedure to improve the model performance. In an experimental analysis, we show that small- and moderate-sized instances can be solved to optimality within short CPU times.