953 resultados para Metals in water
Resumo:
The electrocatalysts of Pt/C, PtRu/C and Ru/C were prepared by the impregnation method. The facet characterization, the dispersion and the particle size for the catalysts were determined by means of X-ray diffraction and transmission electron microscopy. X-ray photoelectron spectroscopy was also used to analyze the state and the valency of the noble metals. The results show that the particle size was in nanometer range and the binary metals have come into being an alloy. The platinum in the catalysts existed in zero valency. The valency of the ruthenium on the surface is different from that in the body, while the ruthenium on the surface existed in oxide-form. PtRu/C and Pt/C are of good activity to the electrooxidation of hydrogen except Ru/C. PtRu/C is more tolerant of CO than Pt/C, and CO is only adsorbed on Pt.
Resumo:
Lake of the Woods (LOW) is an international waterbody spanning the Canadian provinces of Ontario and Manitoba, and the U.S. state of Minnesota. In recent years, there has been a perception that water quality has deteriorated in northern regions of the lake, with all increase in the frequency and intensity of toxin-producing cyanobacterial blooms. However, given the lack of long-term data these trends are difficult to verify. As a first step, we examine spatial and seasonal patterns in water quality in this highly complex lake on the Canadian Shield. Further, we examine surface sediment diatom assemblages across multiple sites to determine if they track within-take differences in environmental conditions. Our results show that there are significant spatial patterns in water quality in LOW. Principal Component Analysis divides the lake into three geographic zones based primarily on algal nutrients (i.e., total phosphorus, TP), with the highest concentrations at sites proximal to Rainy River. This variation is closely tracked by sedimentary diatom assemblages, with [TP] explaining 43% of the variation in diatom assemblages across sites. The close correlation between water quality and the surface sediment diatom record indicate that paleoecological models could be used to provide data on the relative importance of natural and anthropogenic sources of nutrients to the lake.
Resumo:
lThe study was supported by the Knowledge Innovation Foundation of the institute of Geographical Sciences and Natural Resource, Chinese Academy of Sciences (Grant No. 200906002) and Key Directional Project of Knowledge Innovation of Chinese Academy of Sciences (Grant No. KSCX2-YW-N-46-01). The authors would like to thank to Luke Driskell for his kind help and hard work on English language polishing of the article.
Resumo:
A novel water-soluble electroactive polymer, aniline pentamer crosslinked chitosan (Pentamer-c-Chi), was prepared by condensation polymerization of the terminal carboxyl groups in aniline pentamer with the amino side groups in chitosan in aqueous solution. The carboxyl groups were activated by N-hydroxysuccinimide (NHS) and N,N'-dicyclohexylcarbodiimide (I)CC). The electrochemical behavior of aniline pentamer in this kind of crosslinked polymer was studied in acidic aqueous solution by means of cyclic voltammetry (CV), UV-vis, and electron spin resonance (ESR) spectroscopy.
Resumo:
A simple novel method for preparing multiwalled carbon nanotubes/montmorillonite (MWNTs/MMT) hybrids has been established through mixing pristine MWNTs in MMT aqueous dispersion. The principle of this method is based on the formation of stable dispersion containing both MWNTs and MMT in water, which results from strong interaction between MWNTs and MMT platelets. Sedimentation experiments, measurements of potential, and Raman spectra have been used to confirm the presence of strong interaction between MWNTs and MMT sheets. The morphology observation for the dried MWNTs/MMT hybrids shows that the obtained hybrids are homogeneous, in which MWNTs exist as the state of single nanotubes that are absorbed on the surface and edge of MMT sheets.
Resumo:
Single-walled carbon nanohorn (SWCNH) was developed as new adsorbent for solid-phase extraction using 4-nitrophenol as representative. The unique exoteric structures and high surface area of SWCNH allow extracting a large amount of 4-nitrophenol over a short time. Highly sensitive determination of 4-nitrophenol was achieved by linear sweep voltammetry after only 120 s extraction. The calibration plot for 4-nitrophenol determination is linear in the range of 5.0 x 10(-8) M-1.0 x 10(-5) M under optimum conditions. The detection limit is 1.1 x 10(-8) M. The proposed method was successfully employed to determine 4-nitrophenol in lake water samples, and the recoveries of the spiked 4-nitrophenol were excellent (92-106%).
Resumo:
In this paper, we have reported a facile method for the synthesis of ordered magnetic core-manganese oxide shell nanostructures. The process included two steps. First, manganese ferrite nanoparticles were obtained through a solvothermal method. Then, the manganese ferrite nanoparticles were mixed directly with KMnO4 solution without any additional modified procedures of the magnetic cores. It has been found that Mn element in the core can react with KMnO4 to form manganese oxide which acts as a seed for the in-situ growth of manganese oxide shells. This is significant for the controllable fabrication of symmetrical ordered manganese oxide shell structures. The shell thickness can be easily controlled through the reaction time. Transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction and energy-dispersive X-ray spectroscopy have been employed to characterize the products at different reaction time.
Resumo:
CO2-in-Water (C/W) emulsion was formed by using a nonionic surfactant of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) (P123), and palladium nanoparticles were synthesized in situ in the present work. The catalytic performance of Pd nanoparticles in the C/W emulsion has been discussed for a selective hydrogenation of citral. Much higher activity with a turnover frequency (TOF) of 6313 h(-1) has been obtained in this unique C/W emulsion compared to that in the W/C microemulsion (TOF, 23 h(-1)), since the reaction was taking place not only in the surfactant shell but also on the inner surface of the CO2 core in the C/W emulsion. Moreover, citronellal was obtained with a higher selectivity for that it was extracted to a supercritical carbon dioxide (scCO(2)) phase as formed and thus its further hydrogenation was prohibited. The Pd nanoparticles could be recycled several times and still retain the same selectivity, but it showed a little aggregation leading to a slight decrease in conversion.
Resumo:
A clean process has been developed for the synthesis of p-menthane-3,8-diols from cyclization of citronellal in CO2-H2O medium without any additives. With the addition of CO2, the reaction rate could be enhanced about 6 times for the cyclization of citronellal in H2O, because CO2 dissolved into water and formed carbonic acid inducing an increase of the acidity. Although, the reaction conversion in CO2-H2O is slightly lower compared to that obtained with sulfuric acid as catalyst, CO2-H2O could replace the sulfuric acid at a relative higher reaction temperature. The reaction kinetics studies showed that the hydration of isopulegols to p-menthane-3,8-diols is a reversible reaction. The equilibrium constant and the maximum equilibrium yield obtained in CO2-H2O at a range of CO2 pressures are similar to that with sulfuric acid catalyst.
Resumo:
Carbon nanotubes (CNTs) are used as templates to synthesize regioselective polymers from enzymatic polymerization of phenol in water. About 90% of total polymeric units in the obtained polymers are the highly thermally stable oxyphenylene units. The polymer-yields are dependent on the quantities of CNTs used. On the basis of MWNT-templated enzymatic polymerization of phenol, covalent attachment of polyphenol chains to the surface of MWNT by way of a linking molecule, hydroquinone, is achieved. This approach supplies a novel way for producing high-performance polymers and for functionalization of the surface of CNT.
Resumo:
A facile and convenient synthesis method has been developed for substituted quinoxalines and 2H-benzo[b][1,4]oxazines from the reactions of alpha-bromoketones with benzene-1,2-diamine and 2-aminophenol, respectively, which were catalyzed by tetrabutyl ammonium bromide (TBAB) in aqueous basic media.
Resumo:
Docetaxel (DX) is one of the most effective antineoplastic drugs. Its current clinical administration is limited because of its hydrophobicity and Serious side effects. A polymer/DX conjugate is designed and successfully prepared to solve these problems. It is monomethoxy-poly(ethylene glycol)-block-poly(L-lactide)/DX (MPEG-PLLA/DX) It was synthesized by reacting DX with carboxyl-terminated copolymer MPEG-PLLA, which was prepared by reacting succinic anhydride with hydroxyl-terminated copolymer monomethoxy-poly(ethylene glycol)-block-poly (L-lactide) (MPEG-PLLA). Its structure and molecular weight was confirmed by H-1 NMR and GPC. The MPEG-PLLA/DX micelles in aqueous solution were prepared Using a SO]vent displacement method and characterized by dynamic light scattering for size and size distribution, and by transmission electron microscopy for surface morphology. Its antitumor activity against HeLa cancer cells evaluated by MTT assay showed that it had a similar antitumor activity to Pure D at the same drug content.
Resumo:
A new methodology is described for the one-step aqueous preparation of highly monodisperse gold nanoparticles with diameters below 5 nm using thioether- and thiol-functionalized polymer ligands. The particle size and size distribution was controlled by subtle variation of the polymer structure. It was shown that poly(acrylic acid) (PAA) and poly(methacrylic acid) (PMAA) were the most effective stabilizing polymers in the group studied and that relatively low molar mass ligands (similar to 2500 g/mol) gave rise to the narrowest particle size distributions. Particle uniformity and colloidal stability to changes in ionic strength and pH were strongly affected by the hydrophobicity of the ligand end group. "Multidentate" thiol-terminated ligands were produced by employing dithiols and tetrathiols as chain-transfer agents, and these ligands gave rise to particles with unprecedented control over particle size and enhanced colloidal stability. It was found throughout that dynamic light scattering (DLS) is a very useful corroboratory technique for characterization of these gold nanoparticles in addition to optical spectroscopy and TEM.
Resumo:
In this study, KMgF3:Eu2+ luminescent nanocrystals (NCs) were prepared in water/cetyltrimethylammonium bromide (CTAB)/2-octanol microemulsions. The KMgF3:Eu2+ NCs were characterized by transmission electron microscopy (TEM), X-ray diffractometer (XRD), fluorescence spectrum, infrared spectroscopy (IR) and elementary analysis. The results showed that the size of the KMgF3:Eu2+ NCs was hardly affected by water content and surfactant (CTAB) concentration. The emission spectrum showed that the position of the 362 nm peak is due to the K+ sites substituted Eu2+. Two emission peaks located at 589 and 612 nm can be attributed to Eu3+, which exist at two different types of Eu3+ centers: one is Eu3+ at a K+ site, the other is clustering of Eu3+ ions in the interstices of KMgF3 host lattice.