934 resultados para Metallic defects
Resumo:
It is known that despite companies’ efforts to improve the quality of their products, design and assembly defects results in large repair costs both in terms of repair and providing feedback to the origin of the defect. The purpose of this paper is to study these types of defects and the defect rates in design and assembly. The paper presents a web based questionnaire answered by 29 companies. The result shows that the defect rate (defects per product) spanned from 0.01 to 10. Also, design and assembly defects covered 46%, 23% respectively, of all occurred defects. A case study is also presented, performed at a company who recently implemented a modular architecture. In this company, defects from 5 700 integrated product architectures are compared with defects from 431 modular architectures. The average defect rate increased by 21.5% – from 0.65 to 0.79 – when a more modular architecture has been implemented. Furthermore, the study showed that the assembly defects have decreased while the design defects increased. The results presented in this paper will also support the development of the MPV (Module Property Verification) method which is briefly described.
Resumo:
This study determines for the first time Na, K, Ca, Mg, Fe, Cu, Zn, Mn, Sr, Li and Rb contents in wines from the archipelagos of Madeira and Azores (Portugal). The greater part of the mean content for the different parameters fell within the ranges described in the literature, except for sodium whose higher content may be due to the effect of marine spray. ANOVA was used to establish the metals with significant differences in mean content between the wines from both archipelagos, between table and liquor wines of Madeira, and between wines of Pico and Terceira Islands from the Azores archipelago. Principal component analysis shows differences in the wines according to the wine-making process and/or the equipment employed. Stepwise linear discriminant analysis achieves a good classification and validation of wines according to the archipelago of origin, and the island in the case of Azores wines.
Resumo:
Radial glial cells (RGCs) in the ventricular neuroepithelium of the dorsal telencephalon are the progenitor cells for neocortical projection neurons and astrocytes. Here we showthatthe adherens junction proteins afadin and CDH2 are criticalforthe control of cell proliferation in the dorsal telencephalon and for the formation of its normal laminar structure. Inactivation of afadin or CDH2 in the dorsal telenceph-alon leads to a phenotype resembling subcortical band heterotopia, also known as “double cortex,” a brain malformation in which heterotopic gray matter is interposed between zones of white matter. Adherens junctions between RGCs are disrupted in the mutants, progenitor cells are widely dispersed throughout the developing neocortex, and their proliferation is dramatically increased. Major subtypes of neocortical projection neurons are generated, but their integration into cell layers is disrupted. Our findings suggest that defects in adherens junctions components in mice massively affects progenitor cell proliferation and leads to a double cortex-like phenotype.
Resumo:
The cobalt-chromium alloy is extensively used in the Odontology for the confection of metallic scaffolding in partial removable denture. During the last few years, it has been reported an increasing number of premature imperfections, with a few months of prosthesis use. The manufacture of these components is made in prosthetic laboratories and normally involves recasting, using parts of casting alloy and parts of virgin alloy. Therefore, the objective of the present study was to analyze the mechanical properties of a commercial cobalt-chromium alloy of odontological use after successive recasting, searching information to guide the dental prosthesis laboratories in the correct manipulation of the cobalt-chromium alloy in the process of casting and the possible limits of recasting in the mechanical properties of this material. Seven sample groups were confectioned, each one containing five test bodies, divided in the following way: G1: casting only with virgin alloy; G2: casting with 50% of the alloy of the G1 + 50% of virgin alloy; G3: casting with 50% of the alloy of the G2 + 50% of virgin alloy; G4: casting with 50% of the alloy of the G3 + 50% of virgin alloy; G5: 50% of alloy of the G4 + 50% of virgin alloy; G6: 50% of alloy of the G5 + 50% of virgin alloy and finally the G7, only with recasting alloy. The modifications in the mechanical behavior of the alloy were evaluated. Moreover, it was carried the micro structural characterization of the material by optic and electronic scanning microscopy, and X ray diffraction.and fluorescence looking into the correlatation of the mechanical alterations with structural modifications of the material caused by successive recasting process. Generally the results showed alterations in the fracture energy of the alloy after successive recasting, resulting mainly of the increasing presence of pores and large voids, characteristic of the casting material. Thus, the interpretation of the results showed that the material did not reveal significant differences with respect to the tensile strength or elastic limit, as a function of successive recasting. The elastic modulus increased from the third recasting cycle on, indicating that the material can be recast only twice. The fracture energy of the material decreased, as the number of recasting cycles increased. With respect to the microhardness, the statistical analyses showedno significant differences. Electronic scanning microscopy revealed the presence of imperfections and defects, resulting of the recasting process. X ray diffraction and fluorescence did not show alterations in the composition of the alloy or the formation of crystalline phases between the analyzed groups. The optical micrographs showed an increasing number of voids and porosity as the material was recast. Therefore, the general conclusion of this study is that the successive recasting of of Co-Cr alloys affects the mechanical properties of the material, consequently leading to the failure of the prosthetic work. Based on the results, the best recommendadition is that the use of the material should be limited to two recasting cycles
Resumo:
The nuclear poly(A)-binding protein 1 (PABPN1) is a ubiquitously expressed protein that plays a critical role in polyadenylation. Short expansions of the polyalanine tract in the N-terminus of PABPN1 lead to oculopharyngeal muscular dystrophy (OPMD), which is an adult onset disease characterized by eyelid drooping, difficulty in swallowing and weakness in the proximal limb muscles. Although significant data from in vitro biochemical assays define the function of PABPN1 in control of poly(A) tail length, little is known about the role of PABPN1 in mammalian cells. To assess the function of PABPN1 in mammalian cells and specifically in cells affected in OPMD, we examined the effects of PABPN1 depletion using siRNA in primary mouse myoblasts from extraocular, pharyngeal and limb muscles. PABPN1 knockdown significantly decreased cell proliferation and myoblast differentiation during myogenesis in vitro. At the molecular level, PABPN1 depletion in myoblasts led to a shortening of mRNA poly(A) tails, demonstrating the cellular function of PABPN1 in polyadenylation control in a mammalian cell. In addition, PABPN1 depletion caused nuclear accumulation of poly(A) RNA, revealing that PABPN1 is required for proper poly(A) RNA export from the nucleus. Together, these experiments demonstrate that PABPN1 plays an essential role in myoblast proliferation and differentiation, suggesting that it is required for muscle regeneration and maintenance in vivo.
Pkc1 acts through Zds1 and Gic1 to suppress growth and cell polarity defects of a yeast eIF5A mutant
Resumo:
eIF5A is a highly conserved putative eukaryotic translation initiation factor that has been implicated in translation initiation, nucleocytoplasmic transport, mRNA decay, and cell proliferation, but with no precise function assigned so far. We have previously shown that high-copy PKCI suppresses the phenotype of tif51A-1, a temperature-sensitive mutant of eIF5A in S. cerevisiae. Here, in an attempt to further understand how Pkc1 functionally interacts with eIF-5A, it was determined that PKCI suppression of tif51A-1 is independent of the cell integrity MAP kinase cascade. Furthermore, two new suppressor genes, ZDS1 and GIC1, were identified. We demonstrated that ZDS1 and ZDS2 are necessary for PKC1, but not for GIC1 suppression. Moreover, high-copy GIC1 also suppresses the growth defect of a PKCI mutant (stt1), suggesting the existence of a Pkc1-Zds1-Gic1 pathway. Consistent with the function of Gic1 in actin organization, the tif51A-1 strain shows an actin polarity defect that is partially recovered by overexpression of Pkc1 and Zds1 as well as Gic1. Additionally, PCL1 and BNI1, important regulators of yeast cell polarity, also suppress tif51A-1 temperature sensitiviiy Taken together, these data strongly Support the correlated involvement of Pkc1 and eIF5A in establishing actin polarity, which is essential for bud formation and G1/S transition in S. cerevisiae.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A joint use of experimental and theoretical techniques allows us to understand the key role of intermediate- and short-range defects in the structural and electronic properties of ZnO single crystals obtained by means of both conventional hydrothermal and microwave-hydrothermal synthesis methods. X-ray diffraction, Raman spectra, photoluminescence, scanning electronic and transmission electron microscopies were used to characterize the thermal properties, crystalline and optical features of the obtained nano and microwires ZnO structures. In addition, these properties were further investigated by means of two periodic models, crystalline and disordered ZnO wurtzite structure, and first principles calculations based on density functional theory at the B3LYP level. The theoretical results indicate that the key factor controlling the electronic behavior can be associated with a symmetry breaking process, creating localized electronic levels above the valence band.
Resumo:
The aim of this study was to clinically and radiographically evaluate acute bone shortening followed by gradual lengthening in the treatment of large segmental tibia defects induced in seven clinically normal dogs. A circular external fixator was assembled with one proximal 5/8-circle ring, one middle ring and one distal ring connected with three rods. Thirty per cent of the tibia and fibula were removed in the middle and distal parts of the diaphyses, between the middle and distal rings. Acute bone shortening with compression of proximal and distal segments was performed. A subperiosteal osteotomy was performed between the half-ring and middle ring. Bone distraction started 7 days after surgery; after lengthening, the apparatus was left in place for 14 weeks for consolidation of regenerated bone. The frame was removed at the end of this period, and the dogs observed for four more weeks. Functional results were considered excellent in two, good in three and fair in the other two dogs. Bone regeneration within the distraction gap was obtained 14 weeks after neutral fixation period. We concluded that acute bone shortening followed by gradual lengthening by Ilizarov method can be used to treat extensive tibial defects in dogs, although it presents limb temporary abnormal limb shape and unequal length as early disadvantages.
Resumo:
Background: An experimental study was done to assess the ability of the vegetal polymer miniplates and screws to repair defects of the orbital floor.Methods: An artificial standard-sized defect was created in the bony floor of right orbit of 45 albino rabbits. The animals were divided into three experimental groups: control group (G1) involving animals with orbital floor defect and no treatment; titanium group (G2) containing animals with orbital floor defect repaired by titanium miniplates and screws; vegetal polymer group (G3) composed of animals with similar orbital floor defects repaired by vegetal polymer miniplates and screws. Throughout the course of the experiment, the animals were clinically evaluated. At 15, 30 and 60 days after surgery, the animals were killed. They were X-rayed immediately after the floor defect and at the moment of sacrifice. Histological and morphometric evaluation of inflammatory reaction and bone healing was done. Data were statistically evaluated.Results: No implants were extruded. Bone consolidation was similar in G2 and G3 and better than in G1 group animals. Inflammatory reaction was most pronounced in animals of G3 15 days after surgery, and it subsided over time.Conclusion: Vegetal polymer miniplates and screws induces small inflammatory reaction and had the ability to stimulate bone growth with good integration in the orbital floor defect allowing to consider the vegetal polymer adequate option to treat orbital floor defects. Future studies involving long-term follow-up and biomechanical tests to evaluate material resistance to traction are needed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The purpose of this study was to analyze histologically the influence of platelet-rich plasma (PRP) coagulated with two different activators on bone healing in surgically created critical-size defects (CSD) in rat calvaria.Forty-eight rats were divided into three groups: C, PRP-C and PRP-T. An 8 mm diameter CSD was created in the calvarium of each animal. In group C, the defect was filled by a blood clot only. In groups PRP-C and PRP-T, the defect was filled with PRP activated with either calcium chloride or thromboplastin solution, respectively. Each group was divided into two subgroups (n = 8 per subgroup) and killed at either 4 or 12 weeks postoperatively. Histologic and histometric analyses were performed. The amount of new bone formed was calculated as a percentage of the total area of the original defect. Percentage data were transformed into arccosine for statistical analysis (analysis of variance, Tukey's post hoc test, p < 0.05).No defect completely regenerated with bone. Group PRP-C had a statistically greater amount of bone formation than groups C and PRP-T at both time points of analysis. No statistically significant differences were observed between groups C and PRP-T.It can be concluded that the type of activator used to initiate PRP clot formation influences its biological effect on bone healing in CSD in rat calvaria.
Resumo:
OBJECTIVE: The aim of this study was to evaluate histomorphometrically the effect of alveolex (Propolis 10%) on the repair of bone cavities in the calvaria of rats. MATERIALS and METHODS: A 5 mm diameter bone defect was made in the calvaria of male Wistar rats using the drill-type trephine. The defects were filled with rhBMP-21Alveolex, rhBMP-2, Alveolex, or coagulum. Twenty-eight animals with seven subjects on each were sacrificed 30 days after surgery and samples were fixed and embedded in paraffin. Histological sections stained by HE (hematoxylin and eosin) were obtained from the calvaria bone defect and analyzed by a differential point-counting method. RESULTS: Group I and II, rhBMP-21Alveolex and rhBMP-2, respectively, presented higher levels of newly formed bone than other groups (P < 0.001). There were not significant differences between groups I and II (P > 0.05). In addition, there was not significant difference between groups III and IV, Control-Coagulum and Alveolex, respectively (P > 0.05). CONCLUSION: Alveolex has increased the bone repair in calvaria defects of rats when associated to rhBMP-2, however without significant differences for rhBMP-2 isolated group; Alveolex isolated group showed the lowest levels of newly formed bone with no significant differences to coagulum group (control). Microsc. Res. Tech. 75: 36-41, 2012. (C) 2011 Wiley Periodicals, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)