978 resultados para Metabolic activity inhibition


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The free radical theory of aging postulates that aging is caused by damage induced by oxidative stress. Such stress is present when the production of reactive oxygen species (ROS) exceeds the cellular antioxidant capacity. Hydrogen peroxide (H2O2) is one of the most abundant ROS. It is produced as a by-product by several enzymes and acts as second messenger controlling the activity of numerous cellular pathways. To maintain H2O2 levels that are sufficiently high to allow signaling to occur, but low enough to prevent damage of cellular macromolecules, the production and removal of H2O2 must be tightly regulated.rnWhen we investigated the effects of peroxide stress in the nematode C. elegans, we found that exogenous as well as endogenous peroxide stress causes age-related symptoms. We identified 40 target proteins of hydrogen peroxide that contain cysteines that get oxidized upon peroxide stress. Oxidation of redox-sensitive cysteines has been shown to regulate numerous cellular functions and likely contributes to the peroxide-mediated decrease in motility, fertility, growth rate and ATP levels. By monitoring the oxidation status of proteins over the lifespan of C. elegans, we discovered that many of the identified peroxide-sensitive proteins are heavily oxidized at distinct stages in life. As the free radical theory of aging predicts, we found oxidation to be significantly elevated in senescent worms. However, we were also able to identify numerous proteins that were significantly oxidized during the development of C. elegans. To investigate whether a correlation exists between developmental oxidative stress and lifespan, we monitored protein oxidation in long- and short-lived strains. We found that protein oxidation in short-lived C. elegans larvae was significantly increased. Additionally short-lived worms were incapable of recovering from the oxidative stress experienced during development which resulted in the inability to establish reducing conditions for the following reproductive phase. Long-lived C. elegans, on the other hand, did only experience a mild increase in protein oxidation in the developmental phase and were able to recover faster from oxidative stress than wild type worms. rnBecause many proteins that are sensitive to oxidation by H2O2 became oxidized in aging C. elegans, we monitored endogenous hydrogen peroxide concentrations over C. elegans lifespan and discovered that peroxide levels are significantly elevated in development. This suggests that the observed developmental protein oxidation is peroxide-mediated. The early onset of oxidative stress might be a result of increased metabolic activity in C. elegans development but could also represent the requirement of ROS dependent signaling events. Our results indicate that longevity is dependent on the worm’s ability to cope with this early boost of oxidants.rn

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oligodendrocytes form specialized plasma membrane extensions which spirally enwrap axons, thereby building up the myelin sheath. During myelination, oligodendrocytes produce large amounts of membrane components. Oligodendrocytes can be seen as a complex polarized cell type with two distinct membrane domains, the plasma membrane surrounding the cell body and the myelin membrane. SNARE proteins mediate the fusion of vesicular cargoes with their target membrane. We propose a model in which the major myelin protein PLP is transported by two different pathways. VAMP3 mediates the non-polarized transport of newly synthesized PLP via recycling endosomes to the plasma membrane, while transport of PLP from late endosomes/lysosomes to myelin is controlled by VAMP7. In the second part of the thesis, the role of exosome secretion in glia to axon signaling was studied. Further studies are required to clarify whether VAMP7 also controls exosome secretion. The thesis further focused on putative metabolic effects in the target neurons. Oligodendroglial exosomes showed no obvious influences on neuronal metabolic activity. Analysis of the phosphorylation levels of the neurofilament heavy subunit revealed a decrease in presence of oligodendrocytes, indicating effects of oligodendroglial exosomes on the neuronal cytoskeleton. Finally, candidates for kinases which are possibly activated upon influence of oligodendroglial exosomes and could influence neuronal survival were identified.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ovarialkarzinome stellen eine schwer zu therapierende onkologische Erkrankung mit im Durchschnitt sehr schlechter Prognose dar. Die Notwendigkeit einer weiteren Verbesserung der Therapie dieser Erkrankung ist sehr offensichtlich. Studien an anderen Tumorentitäten haben die große Bedeutung des Glukosestoffwechsels, speziell des Laktats, in der Erken- nung, Kategorisierung und Therapie von onkologischen Erkrankungen gezeigt. In der Kon- trolle des Glukosestoffwechsels, aber auch vieler anderer Funktionen, wie z. B. des Tumor- wachstums und des Zellüberlebens, hat sich der Hypoxia Inducible Factor (HIF) als beson- ders wichtig herausgestellt. In der vorliegenden Arbeit wurde daher der Glukosestoffwechsel in Ovarialkarzinomen und seine Beeinflussung durch eine Herunterregulierung von HIF-1α untersucht. Hierzu wurden die Ovarialkarzinomzelllinien OC 316 und IGROV1 (Wildtyp) und die Zelllinie OC 316 mit einem lentiviralen Vektor zur Herunterregulierung von HIF-1α ver- wendet. Das Wachstumsverhalten, die Laktatproduktion und der Glukoseverbrauch wurden bei diesen Zelllinien in vitro untersucht. Darüber hinaus wurden mithilfe der bildgebenden Biolumineszenz ATP, Laktat, Pyruvat und Glukose in Xenotransplantaten dieser Zelllinien gemessen. Diese in unserer Arbeitsgruppe entwickelte Methode erlaubt die quantitative Er- fassung von Metaboliten in selektiven Gewebsarealen, wie z. B. in vitalen Tumorregionen, in stomatösen Arealen oder im tumornahen Normalgewebe.rnIn dieser Arbeit kann gezeigt werden, dass die glykolytische Aktivität von Ovarialkarzinom- zelllinien mit dem Wachstumsverhalten positiv korreliert ist. Eine Herunterregulierung von HIF-1α führt zu einer deutlichen Verlangsamung des Zellwachstums, wobei allerdings alle HIF-Zielgene betroffen sein können. Des Weiteren wird mit den hier gezeigten Daten die prognostische Bedeutung des Laktats bestätigt. Hohe Laktatwerte in vitro waren mit schnel- lerem Wachstum korreliert. Zusätzlich zeigen die vorliegenden Daten, dass die gewonnenen Befunde in vitro nur näherungsweise auf die in vivo Situation übertragbar sind. Eine Herun- terregulierung von HIF-1α zeigt keine signifikant unterschiedlichen Laktatwerte in den Xe- notransplantaten. Allerdings spiegeln sich zelllinienspezifische Unterschiede in der metabo- lischen Aktivität in vitro im metabolischen Verhalten der entsprechenden Xenografttumoren recht gut wider.rnDie gewonnenen Ergebnisse weisen zum einen auf die prognostische Bedeutung einer Bestimmung von Laktatkonzentrationen aus Tumorbiopsien hin und bestätigen zum anderen die klinische Aussagekraft metabolischer Aktivitätsmessungen mittels PET. Solche Daten könnten dazu dienen Patienten einer individualisierten Therapie zuzuführen. Außerdem wur- de die Effektivität, aber auch die Komplexität einer gegen HIF-1α gerichteten Therapie auf Protein- und Genebene bestätigt. Somit zeigen die erzielten Resultate einerseits Möglichkei- ten einer individualisierten Therapie auf, andererseits unterstreichen sie die große Notwen- digkeit weiterer Grundlagenforschung auf diesem Gebiet.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aims of this research study is to explore the opportunity to set up Performance Objectives (POs) parameters for specific risks in RTE products to propose for food industries and food authorities. In fact, even if microbiological criteria for Salmonella and Listeria monocytogenes Ready-to-Eat (RTE) products are included in the European Regulation, these parameters are not risk based and no microbiological criteria for Bacillus cereus in RTE products is present. For these reasons the behaviour of Salmonella enterica in RTE mixed salad, the microbiological characteristics in RTE spelt salad, and the definition of POs for Bacillus cereus and Listeria monocytogenes in RTE spelt salad has been assessed. Based on the data produced can be drawn the following conclusions: 1. A rapid growth of Salmonella enterica may occurr in mixed ingredient salads, and strict temperature control during the production chain of the product is critical. 2. Spelt salad is characterized by the presence of high number of Lactic Acid Bacteria. Listeria spp. and Enterobacteriaceae, on the contrary, did not grow during the shlef life, probably due to the relevant metabolic activity of LAB. 3. The use of spelt and cheese compliant with the suggested POs might significantly reduce the incidence of foodborne intoxications due to Bacillus cereus and Listeria monocytogenes and the proportions of recalls, causing huge economic losses for food companies commercializing RTE products. 4. The approach to calculate the POs values and reported in my work can be easily adapted to different food/risk combination as well as to any changes in the formulation of the same food products. 5. The optimized sampling plans in term of number of samples to collect can be derive in order to verify the compliance to POs values selected.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In Leber und Dünndarm bauen CYP3A-Enzyme eine Vielzahl von Fremdstoffen ab, die in den Körper gelangt sind. Zudem aber sind diese Enzyme auch in anderen Organen, wie der Haut exprimiert. Doch weder die genaue Zusammensetzung der CYP3A-Isozyme noch deren physiologische Rolle in der Haut sind bisher bekannt. Basierend auf begrenzten in vitro-Daten ist eine Rolle der CYP3A in der kutanen Vitamin D-Synthese denkbar. Auf der anderen Seite könnten die kutanen CYP3A auch lokal oder systemisch verabreichte Medikamente in der Haut verstoffwechseln und so zur Entstehung immunologischer und nicht-immunologischer unerwünschter Arzneimittelwirkungen beitragen, von denen sich bis zu 45 % in der Haut manifestieren.rnDie Arbeitshypothese dieses Projekts war, dass die CYP3A die kutane Synthese von Vitamin D regulieren. In dieser Funktion wurden sie zur Vermeidung von Vitamin D-Mangel-Erkrankungen wie Rachitis oder Osteomalazie in Europäern negativ selektiert. rnDie Expression und Regulation der CYP3A wurde in Hautbiopsien, einer Zelllinie epidermalen Ursprungs und primären Hautzellen wie auch in transgenen Mäusen untersucht. Die metabolische Aktivität der CYP3A gegenüber den kutanen Vitamin D-Vorstufen wurde mit Hilfe rekombinant exprimierter Enzyme untersucht. CYP3A5-mRNA war die häufigste der CYP3A in humanen Hautproben und überstieg die von CYP3A4 um das Dreifache, die von CYP3A7 um das 130-Fache. Damit entsprach diese 1,3 %, 0,01 % bzw. 0,01 % der jeweiligen hepatischen Genexpression. Die Expression von CYP3A43 war zu vernachlässigen. CYP3A5 zeigte eine bimodale Expression sowohl auf mRNA- als auch auf Proteinebene. So zeigten Träger der Wildtyp-Allels *1 eine 3,3-fach höhere mRNA- und 1,8-fach höhere Proteinmenge als homozygote Träger des Nullallels *3. CYP3A4/7- und CYP3A5-Protein wurde v. a. in den Keratinozyten der Epidermis und den Talgdrüsen, also den Bereichen der kutanen Vitamin D-Synthese lokalisiert. Die CYP3A5-Expression wurde ferner in der Haut transgener Mäusen gezeigt, die das Reportergen Luziferase unter Kontrolle des humanen CYP3A5-Promoters exprimieren. Verglichen mit der Leber war die kutane Expression des Vitamin D-Rezeptors (VDR) 100-fach höher, die der Xenosensoren CAR und PXR vergleichbar bzw. zu vernachlässigen. Dementsprechend erhöhte die Behandlung mit 1,25-Dihydroxyvitamin D, dem aktiven Vitamin D-Hormon, und dessen Vorstufen außer 7-Dehydrocholesterol, jedoch nicht der PXR-Ligand Rifampicin, die Expression der CYP3A. Wie in Zwei-Hybrid-Experimenten gezeigt, wurden die Effekte des 1,25-Dihydroxyvitamin D und dessen Vorstufen alleinig durch VDR vermittelt. Die Effektstärke hingegen war abhängig von Zellspender, Zellpassage und Zelltypus. Alle drei CYP3A-Isozyme metabolisieren Vitamin D zu einem oder mehreren unbekannten Metaboliten, jedoch nicht zu 25-Hydroxyvitamin D, dem direkten Vorläufer des aktiven Vitamin D. rnZusammengefasst legen die Daten nahe, dass die kutanen CYP3A, allen voran CYP3A5, die Vitamin D-Homöostase durch VDR-vermittelte Induktion des Abbaus von Vitamin D-Vorstufen regulieren. Dies zusammen mit Sequenzdaten liefert starke Indizien für Vitamin D als treibende Kraft der Selektion des CYP3A-Lokus in Europäern. Der Einfluss der CYP3A-Expression auf selektiv wirksame, klinisch relevante Knochenveränderungen wie Rachitis oder Osteomalazie müssen folgen.rn

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The close resemblance of carbon nanotubes to asbestos fibers regarding their high aspect ratio, biopersistence and reactivity increases public concerns on the widespread use of these materials. The purpose of this study was not only to address the acute adverse effects of industrially produced multiwalled carbon nanotubes (MWCNTs) on human lung and immune cells in vitro but also to further understand if their accumulation and biopersistence leads to long-term consequences or induces adaptive changes in these cells. In contrast to asbestos fibers, pristine MWCNTs did not induce overt cell death in A549 lung epithelial cells and Jurkat T lymphocytes after acute exposure to high doses of this material (up to 30 g/ml). Nevertheless, very high levels of reactive oxygen species (ROS) and decreased metabolic activity were observed which might affect long-term viability of these cells. However, the continuous presence of low amounts of MWCNTs (0.5 g/ml) for 6 months did not have major adverse long-term effects although large amounts of nanotubes accumulated at least in A549 cells. Moreover, MWCNTs did not appear to induce adaptive mechanisms against particle stress in long-term treated A549 cells. Our study demonstrates that despite the high potential for ROS formation, pristine MWCNTs can accumulate and persist within cells without having major long-term consequences or inducing adaptive mechanisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Early developmental conditions have major implications for an individual's fitness. In species where offspring are born simultaneously, the level of sibling competition for food access is intense. In birds, high sibling competition may subject nestlings to decreased growth rate as a result of limited food and increased levels of oxidative stress through high metabolic activity induced by begging behaviors. We manipulated the level of sibling competition in a natural population of great tits and assessed the consequences for nestling body condition and resistance to oxidative stress. In a full factorial design, we both augmented brood size to increase sibling competition and supplemented the male parents with physiological doses of carotenoids thereby doubling the natural carotenoid intake, aiming at increasing the males' investment in current reproduction and thereby decreasing sibling competition. Nestling body mass was reduced by the brood enlargement and enhanced by the carotenoid supplementation of fathers. Nestling resistance to oxidative stress, measured as total antioxidant defenses in whole blood, was not influenced by the treatments. Because nestlings experience high metabolic activities, an absence of an effect of sibling competition on free radicals production seems unlikely. Nestling body mass decreased and resistance to oxidative stress tended to increase with initial brood size, and hence these correlational effects suggest a trade-off between morphological growth and development of the antioxidant system. However, the result of the experimental treatment did not support this trade-off hypothesis. Alternatively, it suggests that nestling developed compensatory mechanisms that were not detected by our antioxidant capacity measure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Independent component analysis (ICA) or seed based approaches (SBA) in functional magnetic resonance imaging blood oxygenation level dependent (BOLD) data became widely applied tools to identify functionally connected, large scale brain networks. Differences between task conditions as well as specific alterations of the networks in patients as compared to healthy controls were reported. However, BOLD lacks the possibility of quantifying absolute network metabolic activity, which is of particular interest in the case of pathological alterations. In contrast, arterial spin labeling (ASL) techniques allow quantifying absolute cerebral blood flow (CBF) in rest and in task-related conditions. In this study, we explored the ability of identifying networks in ASL data using ICA and to quantify network activity in terms of absolute CBF values. Moreover, we compared the results to SBA and performed a test-retest analysis. Twelve healthy young subjects performed a fingertapping block-design experiment. During the task pseudo-continuous ASL was measured. After CBF quantification the individual datasets were concatenated and subjected to the ICA algorithm. ICA proved capable to identify the somato-motor and the default mode network. Moreover, absolute network CBF within the separate networks during either condition could be quantified. We could demonstrate that using ICA and SBA functional connectivity analysis is feasible and robust in ASL-CBF data. CBF functional connectivity is a novel approach that opens a new strategy to evaluate differences of network activity in terms of absolute network CBF and thus allows quantifying inter-individual differences in the resting state and task-related activations and deactivations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: There are inherent conceptual problems in investigating the pharmacodynamics of cancer drugs in vivo. One of the few possible approaches is serial biopsies in patients. However, this type of research is severely limited by methodological and ethical constraints. MATERIALS AND METHODS: A modified 3-dimensional tissue culture technique was used to culture human tumor samples, which had been collected during routine cancer operations. Twenty tumor samples of patients with non-small cell lung cancer (NSCLC) were cultured ex vivo for 120 h and treated with mitomycin C, taxotere and cisplatin. The cytotoxic activity of the anticancer agents was quantified by assessing the metabolic activity of treated tumor cultures and various assays of apoptosis and gene expression were performed. RESULTS: The proliferative activity of the tissue was maintained in culture as assessed by Ki-67 staining. Mitomycin C, cisplatin and taxotere reduced the metabolic activity of the tumor tissue cultures by 51%, 29% and 20%, respectively, at 120 h. The decrease in metabolic activity corresponded to the induction of apoptosis as demonstrated by the typical morphological changes, such as chromatin condensation and nuclear fragmentation. In addition, activated caspase-3 could be verified in apoptotic cells by immunohistochemistry. To verify functional aspects of apoptosis, the induction of chemotherapy-induced cell death was inhibited with the caspase inhibitor z-VAD.fmk. RNA was extracted from the tissue cultures after 120 h of ex vivo drug treatment and was of sufficient quality to allow quantitative PCR. CONCLUSION: The 3-dimensional ex vivo culture technique is a useful method to assess the molecular effects of pharmacological interventions in human cancer samples in vitro. This culture technique could become an important tool for drug development and for the prediction of in vivo drug efficacy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: The aim of the study was to evaluate the antiproliferative potency of Viscum album extract (VA-E) in human bladder carcinoma cell lines with regard to its possible use for intravesical therapy of superficial bladder cancer. MATERIALS AND METHODS: Proliferation (MTT-test or 3H-thymidine incorporation), necrotic disintegration (3H-thymidine release of prelabelled cells) and portions of apoptotic and/or necrotic cells (Annexin-V binding, propidium iodide (PI) labelling and DNA-fluorescence profiles by flow cytometry) were measured in four different human bladder carcinoma cell lines (T24, TCCSUP, J82 and UM-UC3) cultured in vitro. RESULTS: Antiproliferative effects of VA-E were observed in the four bladder carcinoma cell lines tested. Metabolic activity could also be completely abrogated by short-time contact of the cells with VA-E. Apoptosis and necrosis, as underlying mechanisms of action, were differentially expressed by the different cell lines. CONCLUSION: VA-E and cytotoxic proteins, i.e., mistletoe lectins (ML) and viscotoxins (VT), were able to block the growth of bladder carcinoma cells. Together with the immunomodulating properties of VA-E, the observed antiproliferative potency might give a rationale for the topical intravesical application of VA-E for the treatment of superficial bladder cancer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is generally agreed that the mechanical environment of intervertebral disc cells plays an important role in maintaining a balanced matrix metabolism. The precise mechanism by which the signals are transduced into the cells is poorly understood. Osmotic changes in the extracellular matrix (ECM) are thought to be involved. Current in-vitro studies on this topic are mostly short-term and show conflicting data on the reaction of disc cells subjected to osmotic changes which is partially due to the heterogenous and often substantially-reduced culture systems. The aim of the study was therefore to investigate the effects of cyclic osmotic loading for 4 weeks on metabolism and matrix gene expression in a full-organ intervertebral disc culture system. Intervertebral disc/endplate units were isolated from New Zealand White Rabbits and cultured either in iso-osmotic media (335 mosmol/kg) or were diurnally exposed for 8 hours to hyper-osmotic conditions (485 mosmol/kg). Cell viability, metabolic activity, matrix composition and matrix gene expression profile (collagen types I/II and aggrecan) were monitored using Live/Dead cell viability assay, tetrazolium reduction test (WST 8), proteoglycan and DNA quantification assays and quantitative PCR. The results show that diurnal osmotic stimulation did not have significant effects on proteoglycan content, cellularity and disc cell viability after 28 days in culture. However, hyperosmolarity caused increased cell death in the early culture phase and counteracted up-regulation of type I collagen gene expression in nucleus and annulus cells. Moreover, the initially decreased cellular dehydrogenase activity recovered with osmotic stimulation after 4 weeks and aggrecan gene down-regulation was delayed, although the latter was not significant according to our statistical criteria. In contrast, collagen type II did not respond to the osmotic changes and was down-regulated in both groups. In conclusion, diurnal hyper-osmotic stimulation of a whole-organ disc/endplate culture partially inhibits a matrix gene expression profile as encountered in degenerative disc disease and counteracts cellular metabolic hypo-activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

STUDY DESIGN: Ex vivo in vitro study evaluating a novel intervertebral disc/endplate culture system. OBJECTIVES: To establish a whole-organ intervertebral disc culture model for the study of disc degeneration in vitro, including the characterization of basic cell and organ function. SUMMARY OF BACKGROUND DATA: With current in vivo models for the study of disc and endplate degeneration, it remains difficult to investigate the complex disc metabolism and signaling cascades. In contrast, more controlled but simplified in vitro systems using isolated cells or disc fragments are difficult to culture due to the unconstrained conditions, with often-observed cell death or cell dedifferentiation. Therefore, there is a demand for a controlled culture model with preserved cell function that offers the possibility to investigate disc and endplate pathologies in a structurally intact organ. METHODS: Naturally constrained intervertebral disc/endplate units from rabbits were cultured in multi-well plates. Cell viability, metabolic activity, matrix composition, and matrix gene expression profile were monitored using the Live/Dead cell viability test (Invitrogen, Basel, Switzerland), tetrazolium salt reduction (WST-8), proteoglycan and deoxyribonucleic acid quantification assays, and quantitative polymerase chain reaction. RESULTS: Viability and organ integrity were preserved for at least 4 weeks, while proteoglycan and deoxyribonucleic acid content decreased slightly, and matrix genes exhibited a degenerative profile with up-regulation of type I collagen and suppression of collagen type II and aggrecan genes. Additionally, cell metabolic activity was reduced to one third of the initial value. CONCLUSIONS: Naturally constrained intervertebral rabbit discs could be cultured for several weeks without losing cell viability. Structural integrity and matrix composition were retained. However, the organ responded to the artificial environment with a degenerative gene expression pattern and decreased metabolic rate. Therefore, the described system serves as a promising in vitro model to study disc degeneration in a whole organ.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many experts now believe that pervasive problems in affect regulation constitute the central area of dysfunction in borderline personality disorder (BPD). However, data is sparse and inconclusive. We hypothesized that patients with BPD, in contrast to healthy gender and nationality-matched controls, show a higher frequency and intensity of self-reported emotions, altered physiological indices of emotions, more complex emotions and greater problems in identifying specific emotions. We took a 24-hour psychophysiological ambulatory monitoring approach to investigate affect regulation during everyday life in 50 patients with BPD and in 50 healthy controls. To provide a typical and unmanipulated sample, we included only patients who were currently in treatment and did not alter their medication schedule. BPD patients reported more negative emotions, fewer positive emotions, and a greater intensity of negative emotions. A subgroup of non-medicated BPD patients manifested higher values of additional heart rate. Additional heart rate is that part of a heart rate increase that does not directly result from metabolic activity, and is used as an indicator of emotional reactivity. Borderline participants were more likely to report the concurrent presence of more than one emotion, and those patients who just started treatment in particular had greater problems in identifying specific emotions. Our findings during naturalistic ambulatory assessment support emotional dysregulation in BPD as defined by the biosocial theory of [Linehan, M.M., 1993. Cognitive-Behavioral Treatment of Borderline Personality Disorder. The Guildford Press, New York.] and suggest the potential utility for evaluating treatment outcome.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AIM: Endometriosis is often associated with lower abdominal pain, dysmenorrhea, dyspareunia, and chronic pelvic pain. There is no correlation between the extent of endometriosis and the intensity of pain. The mechanism of pain in endometriosis is unknown. The aim of our study was to investigate the influence of peritoneal fluid (PF) from endometriosis patients on cultured neural cells that are the morphological basis of nociception, and to determine whether there was a relationship between the rAFS staging and an elevation of TGF-beta1 production by these cells. METHODS: Different human neuroblastoma cell lines were grown to 3/4 confluence and then cultured in presence of PF pooled according to the presence of no, mild, or severe endometriosis. After 6 and 24 h of incubation, the morphological changes were assessed and the metabolic activity was determined. RESULTS: The different cell lines showed strongly varying proliferation and aggregation patterns. The metabolic activity was also varying between cell lines, but no consistently increased cell turnover in the PF when compared with the control medium nor associated to a particular, endometriosis-derived PF pool could be shown. In this experimental setting, we have observed that the cell proliferation in the presence of PF was inhibited, and not enhanced as it might have been expected. Measurement of TGF-beta1 showed higher production rates for this cytokine under exposure to PF than in controls for some but not all tested cell lines, but there was no association with the stage (rAFS) of the disease. CONCLUSION: The neuronal cell culture model may become a useful tool to investigate the endometriosis-derived pain, but different endpoints and cell lines may have to be introduced.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Testosterone (TES) 6-β-hydroxylation is a significant metabolic step in the biotransformation of TES in human liver microsomes and reflects cytochrome P450 (CYP) 3A4/5 specific metabolic activity. Several CYP3A enzymes have been annotated in the horse genome, but functional characterization is missing. This descriptive study investigates TES metabolism in the horse liver in vitro and the qualitative contribution of three CYP3A isoforms of the horse. Metabolism of TES was investigated by using equine hepatocyte primary cultures and liver microsomes. Chemical inhibitors were used to determine the CYPs involved in TES biotransformation in equine microsomes. Single CYPs 3A89, 3A94, and 3A95, recombinantly expressed in V79 hamster lung fibroblasts, were incubated with TES and the fluorescent metabolite 7-benzyloxy-4-trifluoromethylcoumarin (BFC). The effect of ketoconazole and troleandomycin was evaluated on single CYPs. Testosterone metabolites were analyzed by HPLC and confirmed by GC/MS. In hepatocyte primary cultures, the most abundant metabolite was androstenedione (AS), whereas in liver microsomes, 6-β-hydroxytestosterone showed the largest peak. Formation of 6-β-hydroxytestosterone and 11-β-hydroxytestosterone in liver microsomes was inhibited by ketoconazole, troleandomycin, and quercetin. Equine recombinant CYP3A95 catalyzed 11-β-hydroxylation of testosterone (TES). Metabolism of BFC was significantly inhibited by ketoconazole in CYP3A95, whereas troleandomycin affected the activities of CYP3A94 and CYP3A95. Both inhibitors had no significant effect on CYP3A89. Metabolic reactions and effects of inhibitors differed between the equine CYP3A isoforms investigated. This has to be considered in future in vitro studies.