970 resultados para Memory Retrieval
Resumo:
In this paper, we consider the problem of document ranking in a non-traditional retrieval task, called subtopic retrieval. This task involves promoting relevant documents that cover many subtopics of a query at early ranks, providing thus diversity within the ranking. In the past years, several approaches have been proposed to diversify retrieval results. These approaches can be classified into two main paradigms, depending upon how the ranks of documents are revised for promoting diversity. In the first approach subtopic diversification is achieved implicitly, by choosing documents that are different from each other, while in the second approach this is done explicitly, by estimating the subtopics covered by documents. Within this context, we compare methods belonging to the two paradigms. Furthermore, we investigate possible strategies for integrating the two paradigms with the aim of formulating a new ranking method for subtopic retrieval. We conduct a number of experiments to empirically validate and contrast the state-of-the-art approaches as well as instantiations of our integration approach. The results show that the integration approach outperforms state-of-the-art strategies with respect to a number of measures.
Resumo:
Ranking documents according to the Probability Ranking Principle has been theoretically shown to guarantee optimal retrieval effectiveness in tasks such as ad hoc document retrieval. This ranking strategy assumes independence among document relevance assessments. This assumption, however, often does not hold, for example in the scenarios where redundancy in retrieved documents is of major concern, as it is the case in the sub–topic retrieval task. In this chapter, we propose a new ranking strategy for sub–topic retrieval that builds upon the interdependent document relevance and topic–oriented models. With respect to the topic– oriented model, we investigate both static and dynamic clustering techniques, aiming to group topically similar documents. Evidence from clusters is then combined with information about document dependencies to form a new document ranking. We compare and contrast the proposed method against state–of–the–art approaches, such as Maximal Marginal Relevance, Portfolio Theory for Information Retrieval, and standard cluster–based diversification strategies. The empirical investigation is performed on the ImageCLEF 2009 Photo Retrieval collection, where images are assessed with respect to sub–topics of a more general query topic. The experimental results show that our approaches outperform the state–of–the–art strategies with respect to a number of diversity measures.
Resumo:
The assumptions underlying the Probability Ranking Principle (PRP) have led to a number of alternative approaches that cater or compensate for the PRP’s limitations. All alternatives deviate from the PRP by incorporating dependencies. This results in a re-ranking that promotes or demotes documents depending upon their relationship with the documents that have been already ranked. In this paper, we compare and contrast the behaviour of state-of-the-art ranking strategies and principles. To do so, we tease out analytical relationships between the ranking approaches and we investigate the document kinematics to visualise the effects of the different approaches on document ranking.
Resumo:
Quantum-inspired models have recently attracted increasing attention in Information Retrieval. An intriguing characteristic of the mathematical framework of quantum theory is the presence of complex numbers. However, it is unclear what such numbers could or would actually represent or mean in Information Retrieval. The goal of this paper is to discuss the role of complex numbers within the context of Information Retrieval. First, we introduce how complex numbers are used in quantum probability theory. Then, we examine van Rijsbergen’s proposal of evoking complex valued representations of informations objects. We empirically show that such a representation is unlikely to be effective in practice (confuting its usefulness in Information Retrieval). We then explore alternative proposals which may be more successful at realising the power of complex numbers.
Creation of a new evaluation benchmark for information retrieval targeting patient information needs
Resumo:
Searching for health advice on the web is becoming increasingly common. Because of the great importance of this activity for patients and clinicians and the effect that incorrect information may have on health outcomes, it is critical to present relevant and valuable information to a searcher. Previous evaluation campaigns on health information retrieval (IR) have provided benchmarks that have been widely used to improve health IR and record these improvements. However, in general these benchmarks have targeted the specialised information needs of physicians and other healthcare workers. In this paper, we describe the development of a new collection for evaluation of effectiveness in IR seeking to satisfy the health information needs of patients. Our methodology features a novel way to create statements of patients’ information needs using realistic short queries associated with patient discharge summaries, which provide details of patient disorders. We adopt a scenario where the patient then creates a query to seek information relating to these disorders. Thus, discharge summaries provide us with a means to create contextually driven search statements, since they may include details on the stage of the disease, family history etc. The collection will be used for the first time as part of the ShARe/-CLEF 2013 eHealth Evaluation Lab, which focuses on natural language processing and IR for clinical care.
Resumo:
Complex numbers are a fundamental aspect of the mathematical formalism of quantum physics. Quantum-like models developed outside physics often overlooked the role of complex numbers. Specifically, previous models in Information Retrieval (IR) ignored complex numbers. We argue that to advance the use of quantum models of IR, one has to lift the constraint of real-valued representations of the information space, and package more information within the representation by means of complex numbers. As a first attempt, we propose a complex-valued representation for IR, which explicitly uses complex valued Hilbert spaces, and thus where terms, documents and queries are represented as complex-valued vectors. The proposal consists of integrating distributional semantics evidence within the real component of a term vector; whereas, ontological information is encoded in the imaginary component. Our proposal has the merit of lifting the role of complex numbers from a computational byproduct of the model to the very mathematical texture that unifies different levels of semantic information. An empirical instantiation of our proposal is tested in the TREC Medical Record task of retrieving cohorts for clinical studies.
Resumo:
This paper presents the results of task 3 of the ShARe/CLEF eHealth Evaluation Lab 2013. This evaluation lab focuses on improving access to medical information on the web. The task objective was to investigate the effect of using additional information such as the discharge summaries and external resources such as medical ontologies on the IR effectiveness. The participants were allowed to submit up to seven runs, one mandatory run using no additional information or external resources, and three each using or not using discharge summaries.
Resumo:
Physical design objects such as sketches, drawings, collages, storyboards and models play an important role in supporting communication and coordination in design studios. CAM (Cooperative Artefact Memory) is a mobile-tagging based messaging system that allows designers to collaboratively store relevant information onto their design objects in the form of messages, annotations and external web links. We studied the use of CAM in a Product Design studio over three weeks, involving three different design teams. In this paper, we briefly describe CAM and show how it serves as 'object memory'.
Resumo:
Here, we investigate the genetic basis of human memory in healthy individuals and the potential role of two polymorphisms, previously implicated in memory function. We have explored aspects of retrospective and prospective memory including semantic, short term, working and long-term memory in conjunction with brain derived neurotrophic factor (BDNF) and tumor necrosis factor-alpha (TNF-alpha). The memory scores for healthy individuals in the population were obtained for each memory type and the population was genotyped via restriction fragment length polymorphism for the BDNF rs6265 (Val66Met) SNP and via pyrosequencing for the TNF-alpha rs113325588 SNP. Using univariate ANOVA, a significant association of the BDNF polymorphism with visual and spatial memory retention and a significant association of the TNF-alpha polymorphism was observed with spatial memory retention. In addition, a significant interactive effect between BDNF and TNF-alpha polymorphisms was observed in spatial memory retention. In practice visual memory involves spatial information and the two memory systems work together, however our data demonstrate that individuals with the Val/Val BDNF genotype have poorer visual memory but higher spatial memory retention, indicating a level of interaction between TNF-alpha and BDNF in spatial memory retention. This is the first study to use genetic analysis to determine the interaction between BDNF and TNF-alpha in relation to memory in normal adults and provides important information regarding the effect of genetic determinants and gene interactions on human memory.
Resumo:
Early works on Private Information Retrieval (PIR) focused on minimizing the necessary communication overhead. They seemed to achieve this goal but at the expense of query response time. To mitigate this weakness, protocols with secure coprocessors were introduced. They achieve optimal communication complexity and better online processing complexity. Unfortunately, all secure coprocessor-based PIR protocols require heavy periodical preprocessing. In this paper, we propose a new protocol, which is free from the periodical preprocessing while offering the optimal communication complexity and almost optimal online processing complexity. The proposed protocol is proven to be secure.
Resumo:
In the field of information retrieval (IR), researchers and practitioners are often faced with a demand for valid approaches to evaluate the performance of retrieval systems. The Cranfield experiment paradigm has been dominant for the in-vitro evaluation of IR systems. Alternative to this paradigm, laboratory-based user studies have been widely used to evaluate interactive information retrieval (IIR) systems, and at the same time investigate users’ information searching behaviours. Major drawbacks of laboratory-based user studies for evaluating IIR systems include the high monetary and temporal costs involved in setting up and running those experiments, the lack of heterogeneity amongst the user population and the limited scale of the experiments, which usually involve a relatively restricted set of users. In this paper, we propose an alternative experimental methodology to laboratory-based user studies. Our novel experimental methodology uses a crowdsourcing platform as a means of engaging study participants. Through crowdsourcing, our experimental methodology can capture user interactions and searching behaviours at a lower cost, with more data, and within a shorter period than traditional laboratory-based user studies, and therefore can be used to assess the performances of IIR systems. In this article, we show the characteristic differences of our approach with respect to traditional IIR experimental and evaluation procedures. We also perform a use case study comparing crowdsourcing-based evaluation with laboratory-based evaluation of IIR systems, which can serve as a tutorial for setting up crowdsourcing-based IIR evaluations.
Resumo:
We consider the following problem: members in a dynamic group retrieve their encrypted data from an untrusted server based on keywords and without any loss of data confidentiality and member’s privacy. In this paper, we investigate common secure indices for conjunctive keyword-based retrieval over encrypted data, and construct an efficient scheme from Wang et al. dynamic accumulator, Nyberg combinatorial accumulator and Kiayias et al. public-key encryption system. The proposed scheme is trapdoorless and keyword-field free. The security is proved under the random oracle, decisional composite residuosity and extended strong RSA assumptions.
Resumo:
Dragon stream cipher is one of the focus ciphers which have reached Phase 2 of the eSTREAMproject. In this paper, we present a new method of building a linear distinguisher for Dragon. The distinguisher is constructed by exploiting the biases of two S-boxes and the modular addition which are basic components of the nonlinear function F. The bias of the distinguisher is estimated to be around 2−75.32 which is better than the bias of the distinguisher presented by Englund and Maximov. We have shown that Dragon is distinguishable from a random cipher by using around 2150.6 keystream words and 259 memory. In addition, we present a very efficient algorithm for computing the bias of linear approximation of modular addition.
Resumo:
This paper addresses the problem of joint identification of infinite-frequency added mass and fluid memory models of marine structures from finite frequency data. This problem is relevant for cases where the code used to compute the hydrodynamic coefficients of the marine structure does not give the infinite-frequency added mass. This case is typical of codes based on 2D-potential theory since most 3D-potential-theory codes solve the boundary value associated with the infinite frequency. The method proposed in this paper presents a simpler alternative approach to other methods previously presented in the literature. The advantage of the proposed method is that the same identification procedure can be used to identify the fluid-memory models with or without having access to the infinite-frequency added mass coefficient. Therefore, it provides an extension that puts the two identification problems into the same framework. The method also exploits the constraints related to relative degree and low-frequency asymptotic values of the hydrodynamic coefficients derived from the physics of the problem, which are used as prior information to refine the obtained models.
Resumo:
Urban space has the potential to shape people's experience and understanding of the city and of the culture of a place. In some respects, murals and allied forms of wall art occupy the intersection of street art and public art; engaging, and sometimes, transforming the urban space in which they exist and those who use it. While murals are often conceived as a more ‘permanent’ form of painted art there has been a trend in recent years towards more deliberately transient forms of wall art such as washed-wall murals and reverse graffiti. These varying forms of public wall art are embedded within the fabric of the urban space and history. This paper will explore the intersection of public space, public art and public memory in a mural project in the Irish city of Cork. Focussing on the washed-wall murals of Cork's historic Shandon district, we explore the sympathetic and synergetic relationship of this wall art with the heritage architecture of the built environment and of the murals as an expression of and for the local community, past and present. Through the Shandon Big Wash Up murals we reflect on the function of participatory public art as an explicit act of urban citizenship which works to support community-led re-enchantment in the city through a reconnection with its past.