877 resultados para Median Voter Hypothesis
Resumo:
Multibiometrics aims at improving biometric security in presence of spoofing attempts, but exposes a larger availability of points of attack. Standard fusion rules have been shown to be highly sensitive to spoofing attempts – even in case of a single fake instance only. This paper presents a novel spoofing-resistant fusion scheme proposing the detection and elimination of anomalous fusion input in an ensemble of evidence with liveness information. This approach aims at making multibiometric systems more resistant to presentation attacks by modeling the typical behaviour of human surveillance operators detecting anomalies as employed in many decision support systems. It is shown to improve security, while retaining the high accuracy level of standard fusion approaches on the latest Fingerprint Liveness Detection Competition (LivDet) 2013 dataset.
Resumo:
Background: The differential susceptibly hypothesis suggests that certain genetic variants moderate the effects of both negative and positive environments on mental health and may therefore be important predictors of response to psychological treatments. Nevertheless, the identification of such variants has so far been limited to preselected candidate genes. In this study we extended the differential susceptibility hypothesis from a candidate gene to a genome-wide approach to test whether a polygenic score of environmental sensitivity predicted response to Cognitive Behavioural Therapy (CBT) in children with anxiety disorders. Methods: We identified variants associated with environmental sensitivity using a novel method in which within-pair variability in emotional problems in 1026 monozygotic (MZ) twin pairs was examined as a function of the pairs’ genotype. We created a polygenic score of environmental sensitivity based on the whole-genome findings and tested the score as a moderator of parenting on emotional problems in 1,406 children and response to individual, group and brief parent-led CBT in 973 children with anxiety disorders. Results: The polygenic score significantly moderated the effects of parenting on emotional problems and the effects of treatment. Individuals with a high score responded significantly better to individual CBT than group CBT or brief parent-led CBT (remission rates: 70.9%, 55.5% and 41.6% respectively). Conclusions: Pending successful replication, our results should be considered exploratory. Nevertheless, if replicated, they suggest that individuals with the greatest environmental sensitivity may be more likely to develop emotional problems in adverse environments, but also benefit more from the most intensive types of treatment.
Resumo:
What explains cross-national variation in wage inequality? Research in comparative political economy stresses the importance of the welfare state and wage coordination in reducing not only disposable income inequality but also gross earnings inequality. However, the cross-national variation in gross earnings inequality between median and low income workers is at odds with this conventional wisdom: the German coordinated market economy is now more unequal in this type of inequality than the UK, a liberal market economy. To solve this puzzle, I argue that non-inclusive coordination benefits median but not bottom income workers and is as a result associated with higher – rather than lower - wage inequality. I find support for this argument using a large N quantitative analysis of wage inequality in a panel of Western European countries. Results are robust to the inclusion of numerous controls, country fixed effects, and also hold with a sample of OECD countries. Taken together these findings force us to reconsider the relationship between coordination and wage inequality at the bottom of the income distribution.
Resumo:
The matrix-tolerance hypothesis suggests that the most abundant species in the inter-habitat matrix would be less vulnerable to their habitat fragmentation. This model was tested with leaf-litter frogs in the Atlantic Forest where the fragmentation process is older and more severe than in the Amazon, where the model was first developed. Frog abundance data from the agricultural matrix, forest fragments and continuous forest localities were used. We found an expected negative correlation between the abundance of frogs in the matrix and their vulnerability to fragmentation, however, results varied with fragment size and species traits. Smaller fragments exhibited stronger matrix-vulnerability correlation than intermediate fragments, while no significant relation was observed for large fragments. Moreover, some species that avoid the matrix were not sensitive to a decrease in the patch size, and the opposite was also true, indicating significant differences with that expected from the model. Most of the species that use the matrix were forest species with aquatic larvae development, but those species do not necessarily respond to fragmentation or fragment size, and thus affect more intensively the strengthen of the expected relationship. Therefore, the main relationship expected by the matrix-tolerance hypothesis was observed in the Atlantic Forest; however we noted that the prediction of this hypothesis can be substantially affected by the size of the fragments, and by species traits. We propose that matrix-tolerance model should be broadened to become a more effective model, including other patch characteristics, particularly fragment size, and individual species traits (e. g., reproductive mode and habitat preference).
Resumo:
In many epidemiological studies it is common to resort to regression models relating incidence of a disease and its risk factors. The main goal of this paper is to consider inference on such models with error-prone observations and variances of the measurement errors changing across observations. We suppose that the observations follow a bivariate normal distribution and the measurement errors are normally distributed. Aggregate data allow the estimation of the error variances. Maximum likelihood estimates are computed numerically via the EM algorithm. Consistent estimation of the asymptotic variance of the maximum likelihood estimators is also discussed. Test statistics are proposed for testing hypotheses of interest. Further, we implement a simple graphical device that enables an assessment of the model`s goodness of fit. Results of simulations concerning the properties of the test statistics are reported. The approach is illustrated with data from the WHO MONICA Project on cardiovascular disease. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Trypanosoma cruzi is highly diverse genetically and has been partitioned into six discrete typing units (DTUs), recently re-named T. cruzi I-VI. Although T. cruzi reproduces predominantly by binary division, accumulating evidence indicates that particular DTUs are the result of hybridization events. Two major scenarios for the origin of the hybrid lineages have been proposed. It is accepted widely that the most heterozygous TcV and TcVI DTUs are the result of genetic exchange between TcII and TcIII strains. On the other hand, the participation of a TcI parental in the current genome structure of these hybrid strains is a matter of debate. Here, sequences of the T. cruzi-specific 195-bp satellite DNA of TcI, TcII, Tat, TcV, and TcVI strains have been used for inferring network genealogies. The resulting genealogy showed a high degree of reticulation, which is consistent with more than one event of hybridization between the Tc DTUs. The data also strongly suggest that Tat is a hybrid with two distinct sets of satellite sequences, and that genetic exchange between TcI and TcII parentals occurred within the pedigree of the TcV and TcVI DTUs. Although satellite DNAs belong to the fast-evolving portion of eukaryotic genomes, in >100 satellite units of nine T. cruzi strains we found regions that display 100% identity. No DTU-specific consensus motifs were identified, inferring species-wide conservation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This thesis contributes to the heuristic optimization of the p-median problem and Swedish population redistribution. The p-median model is the most representative model in the location analysis. When facilities are located to a population geographically distributed in Q demand points, the p-median model systematically considers all the demand points such that each demand point will have an effect on the decision of the location. However, a series of questions arise. How do we measure the distances? Does the number of facilities to be located have a strong impact on the result? What scale of the network is suitable? How good is our solution? We have scrutinized a lot of issues like those. The reason why we are interested in those questions is that there are a lot of uncertainties in the solutions. We cannot guarantee our solution is good enough for making decisions. The technique of heuristic optimization is formulated in the thesis. Swedish population redistribution is examined by a spatio-temporal covariance model. A descriptive analysis is not always enough to describe the moving effects from the neighbouring population. A correlation or a covariance analysis is more explicit to show the tendencies. Similarly, the optimization technique of the parameter estimation is required and is executed in the frame of statistical modeling.
Resumo:
The p-median model is used to locate P facilities to serve a geographically distributed population. Conventionally, it is assumed that the population always travels to the nearest facility. Drezner and Drezner (2006, 2007) provide three arguments on why this assumption might be incorrect, and they introduce the extended the gravity p-median model to relax the assumption. We favour the gravity p-median model, but we note that in an applied setting, Drezner and Drezner’s arguments are incomplete. In this communication, we point at the existence of a fourth compelling argument for the gravity p-median model.
Resumo:
A customer is presumed to gravitate to a facility by the distance to it and the attractiveness of it. However regarding the location of the facility, the presumption is that the customer opts for the shortest route to the nearest facility.This paradox was recently solved by the introduction of the gravity p-median model. The model is yet to be implemented and tested empirically. We implemented the model in an empirical problem of locating locksmiths, vehicle inspections, and retail stores ofv ehicle spare-parts, and we compared the solutions with those of the p-median model. We found the gravity p-median model to be of limited use for the problem of locating facilities as it either gives solutions similar to the p-median model, or it gives unstable solutions due to a non-concave objective function.
Resumo:
The p-median model is used to locate P facilities to serve a geographically distributed population. Conventionally, it is assumed that the population patronize the nearest facility and that the distance between the resident and the facility may be measured by the Euclidean distance. Carling, Han, and Håkansson (2012) compared two network distances with the Euclidean in a rural region witha sparse, heterogeneous network and a non-symmetric distribution of thepopulation. For a coarse network and P small, they found, in contrast to the literature, the Euclidean distance to be problematic. In this paper we extend their work by use of a refined network and study systematically the case when P is of varying size (2-100 facilities). We find that the network distance give as gooda solution as the travel-time network. The Euclidean distance gives solutions some 2-7 per cent worse than the network distances, and the solutions deteriorate with increasing P. Our conclusions extend to intra-urban location problems.
Resumo:
The p-medianmodel is commonly used to find optimal locations of facilities for geographically distributed demands. So far, there are few studies that have considered the importance of the road network in the model. However, Han, Håkansson, and Rebreyend (2013) examined the solutions of the p-median model with densities of the road network varying from 500 to 70,000 nodes. They found as the density went beyond some 10,000 nodes, solutions have no further improvements but gradually worsen. The aim of this study is to check their findings by using an alternative heuristic being vertex substitution, as a complement to their using simulated annealing. We reject the findings in Han et al (2013). The solutions do not further improve as the nodes exceed 10,000, but neither do the solutions deteriorate.
Resumo:
In this paper, we propose a new method for solving large scale p-median problem instances based on real data. We compare different approaches in terms of runtime, memory footprint and quality of solutions obtained. In order to test the different methods on real data, we introduce a new benchmark for the p-median problem based on real Swedish data. Because of the size of the problem addressed, up to 1938 candidate nodes, a number of algorithms, both exact and heuristic, are considered. We also propose an improved hybrid version of a genetic algorithm called impGA. Experiments show that impGA behaves as well as other methods for the standard set of medium-size problems taken from Beasley’s benchmark, but produces comparatively good results in terms of quality, runtime and memory footprint on our specific benchmark based on real Swedish data.
Resumo:
Regarding the location of a facility, the presumption in the widely used p-median model is that the customer opts for the shortest route to the nearest facility. However, this assumption is problematic on free markets since the customer is presumed to gravitate to a facility by the distance to and the attractiveness of it. The recently introduced gravity p-median model offers an extension to the p-median model that account for this. The model is therefore potentially interesting, although it has not yet been implemented and tested empirically. In this paper, we have implemented the model in an empirical problem of locating vehicle inspections, locksmiths, and retail stores of vehicle spare-parts for the purpose of investigating its superiority to the p-median model. We found, however, the gravity p-median model to be of limited use for the problem of locating facilities as it either gives solutions similar to the p-median model, or it gives unstable solutions due to a non-concave objective function.