762 resultados para Mechanical mixtures


Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the biggest challenges for humanity is global warming and consequently, climate changes. Even though there has been increasing public awareness and investments from numerous countries concerning renewable energies, fossil fuels are and will continue to be in the near future, the main source of energy. Carbon capture and storage (CCS) is believed to be a serious measure to mitigate CO2 concentration. CCS briefly consists of capturing CO2 from the atmosphere or stationary emission sources and transporting and storing it via mineral carbonation, in oceans or geological media. The latter is referred to as carbon capture and geological storage (CCGS) and is considered to be the most promising of all solutions. Generally it consists of a storage (e.g. depleted oil reservoirs and deep saline aquifers) and sealing (commonly termed caprock in the oil industry) formations. The present study concerns the injection of CO2 into deep aquifers and regardless injection conditions, temperature gradients between carbon dioxide and the storage formation are likely to occur. Should the CO2 temperature be lower than the storage formation, a contractive behaviour of the reservoir and caprock is expected. The latter can result in the opening of new paths or re-opening of fractures, favouring leakage and compromising the CCGS project. During CO2 injection, coupled thermo-hydro-mechanical phenomena occur, which due to their complexity, hamper the assessment of each relative influence. For this purpose, several analyses were carried out in order to evaluate their influences but focusing on the thermal contractive behaviour. It was finally concluded that depending on mechanical and thermal properties of the pair aquifer-seal, the sealing caprock can undergo significant decreases in effective stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rupture of aortic aneurysms (AA) is a major cause of death in the Western world. Currently, clinical decision upon surgical intervention is based on the diameter of the aneurysm. However, this method is not fully adequate. Noninvasive assessment of the elastic properties of the arterial wall can be a better predictor for AA growth and rupture risk. The purpose of this study is to estimate mechanical properties of the aortic wall using in vitro inflation testing and 2D ultrasound (US) elastography, and investigate the performance of the proposed methodology for physiological conditions. Two different inflation experiments were performed on twelve porcine aortas: 1) a static experiment for a large pressure range (0 – 140 mmHg); 2) a dynamic experiment closely mimicking the in vivo hemodynamics at physiological pressures (70 – 130 mmHg). 2D raw radiofrequency (RF) US datasets were acquired for one longitudinal and two cross-sectional imaging planes, for both experiments. The RF-data were manually segmented and a 2D vessel wall displacement tracking algorithm was applied to obtain the aortic diameter–time behavior. The shear modulus G was estimated assuming a Neo-Hookean material model. In addition, an incremental study based on the static data was performed to: 1) investigate the changes in G for increasing mean arterial pressure (MAP), for a certain pressure difference (30, 40, 50 and 60 mmHg); 2) compare the results with those from the dynamic experiment, for the same pressure range. The resulting shear modulus G was 94 ± 16 kPa for the static experiment, which is in agreement with literature. A linear dependency on MAP was found for G, yet the effect of the pressure difference was negligible. The dynamic data revealed a G of 250 ± 20 kPa. For the same pressure range, the incremental shear modulus (Ginc) was 240 ± 39 kPa, which is in agreement with the former. In general, for all experiments, no significant differences in the values of G were found between different image planes. This study shows that 2D US elastography of aortas during inflation testing is feasible under controlled and physiological circumstances. In future studies, the in vivo, dynamic experiment should be repeated for a range of MAPs and pathological vessels should be examined. Furthermore, the use of more complex material models needs to be considered to describe the non-linear behavior of the vascular tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue engineering arises from the need to regenerate organs and tissues, requiring the development of scaffolds, which can provide an optimum environment for tissue growth. In this work, chitosan with different molecular weights was used to develop biodegradable 3D inverted colloidal crystals (ICC) structures for bone regeneration, exhibiting uniform pore size and interconnected network. Moreover, in vitro tests were conducted by studying the influence of the molecular weight in the degradation kinetics and mechanical properties. The production of ICC included four major stages: fabrication of microspheres; assembly into a cohesive structure, polymeric solution infiltration and microsphere removal. Chitosan’s degree of deacetylation was determined by infrared spectroscopy and molecular weight was obtained via capillary viscometry. In order to understand the effect of the molecular weight in ICC structures, the mass loss and mechanical properties were analyzed after degradation with lysozyme. Structure morphology observation before and after degradation was performed by scanning electron microscopy. Cellular adhesion and proliferation tests were carried out to evaluate ICC in vitro response. Overall, medium molecular weight ICC revealed the best balance in terms of mechanical properties, degradation rate, morphology and biological behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous priority pollutants that tend to be trapped in aquatic sediments due to their high hydrophobicity. Nonetheless, the differential toxicological effects and mechanisms between the various classes of PAHs and their mixtures, as they invariably occur in the environment, are scarcely known, especially under ecologically-relevant scenarios. This thesis aimed at establishing a bridge between the study of mechanistic pathways and environmental monitoring of carcinogenic and non-carcinogenic PAHs, by introducing ecological-relevance in the research with model PAHs. A first bioassay conducted in situ with the mussel Mytilus edulis demonstrated that, dredging operations in harbours increase PAH bioavailability, eliciting genotoxicity, and showed that established environmental guidelines underestimate risk. Subsequent ex situ bioassays were performed with the carcinogenic benzo[b]fluoranthene (B[b]F) and non-carcinogenic phenantrene (Phe), selected following preceding results, and revealed that low-moderate concentrations of these PAHs in spiked sediments induce genotoxic effects to the clam Ruditapes decussatus, therefore contradicting the general notion that bivalves are less sensitive to PAHs than vertebrates due to inefficient bioactivation. Also, it was demonstrated that passive samplers permit inferring on PAH bioavailability but not on bioaccumulation or toxic effects. On the other hand, sea basses (Dicentrarchus labrax), yielded a complex pattern of effects and responses, relatively to genotoxicity, oxidative stress and production of specific metabolites, especially when exposed to mixtures of the PAHs which led to additive, if not synergistic, effects. It was shown that Phe may elicit significant genotoxicity especially in presence of B[b]F, even though the low, albeit realistic, exposure concentrations diluted dose- and time-independent relationships. The present work demonstrated that environmental quality guidelines underestimate the effects of PAHs in realistic scenarios and showed that the significant genotoxic and histopathological effects caused by mixed PAHs may not be reflected by oxidative stress- or CYP-related biomarkers. Besides important findings on the metabolism of PAH mixtures, the work calls for the need to re-evaluate the criteria for assessing risk and for the disclosure of more efficient indicators of toxicological hazard.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the context of this dissertation several studies were developed resulting in submission and publication “Evaluation of mechanical soft-abrasive blasting and chemical cleaning methods on alkyd-paint graffiti made on calcareous stones” to Journal of Cultural Heritage. (http://dx.doi.org/10.101 /j.culher.2014.10.004)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction We studied the richness and abundance of ant species, their bacteria and the bacteria isolated from patient clinical samples. Methods Ants were collected with baited traps at 64 sites in a public hospital in São Luis, State of Maranhão, Brazil. Results In total, 1,659 ants from 14 species were captured. The most frequent species were Crematogaster victima, Solenopsis saevissima, Tapinoma melanocephalum, Camponotus vittatus and Paratrechina fulva. Forty-one species of bacteria were isolated from the ants and 18 from patients. Conclusions Ants are potential vehicles for pathogenic and opportunistic bacteria, and they can represent a risk factor in nosocomial infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite materials have a complex behavior, which is difficult to predict under different types of loads. In the course of this dissertation a methodology was developed to predict failure and damage propagation of composite material specimens. This methodology uses finite element numerical models created with Ansys and Matlab softwares. The methodology is able to perform an incremental-iterative analysis, which increases, gradually, the load applied to the specimen. Several structural failure phenomena are considered, such as fiber and/or matrix failure, delamination or shear plasticity. Failure criteria based on element stresses were implemented and a procedure to reduce the stiffness of the failed elements was prepared. The material used in this dissertation consist of a spread tow carbon fabric with a 0°/90° arrangement and the main numerical model analyzed is a 26-plies specimen under compression loads. Numerical results were compared with the results of specimens tested experimentally, whose mechanical properties are unknown, knowing only the geometry of the specimen. The material properties of the numerical model were adjusted in the course of this dissertation, in order to find the lowest difference between the numerical and experimental results with an error lower than 5% (it was performed the numerical model identification based on the experimental results).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The assessment of concrete mechanical properties during construction of concrete structures is of paramount importance for many intrinsic operations. However many of the available non-destructive methods for mechanical properties have limitations for use in construction sites. One of such methodologies is EMM-ARM, which is a variant of classic resonant frequency methods. This paper aims to demonstrate the efforts towards in-situ applicability of EMMARM, as to provide real-time information about concrete mechanical properties such as E-modulus and compressive strength. To achieve the aforementioned objective, a set of adaptations to the method have been successfully implemented and tested: (i) the reduction of the beam span; (ii) the use of a different mould material and (iii) a new support system for the beams. Based on these adaptations, a reusable mould was designed to enable easier systematic use of EMMARM. A pilot test was successfully performed under in-situ conditions during a bridge construction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently we are witnessing a huge concern of society with the parameters of comfort of the buildings and the energetic consumptions. It is known that there is a huge consumption of non-renewable sources of energy. Thus, it is urgent to develop and explore ways to take advantage of renewable sources of energy by improving the energy efficiency of buildings. The mortars with incorporation of phase change materials (PCM) have the ability to regulate the temperature inside buildings, contributing to the thermal comfort and reduction of the use of heating and cooling equipment, using only the energy supplied by the sun. However, the incorporation of phase change materials in mortars modifies its characteristics. The main purpose of this study was mechanical and thermal characterization of mortars with incorporation of PCM in mortars based in different binders. The binders studied were aerial lime, hydraulic lime, gypsum and cement. For each type of binder a reference composition (0% PCM) and a composition with incorporation of 40% of PCM were developed. It was possible to observe that the incorporation of PCM in mortars caused differences in properties such as workability, compressive strength, flexural strength and adhesion, however leads to an improvement of thermal behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reuse of recycled concrete aggregates in new hot-mix asphalt can be a more sustainable method of production, but these mixtures may need a heat treatment before compaction to improve their water sensitivity performance. A direct consequence of this treatment is an increase in the hot-mix asphalt resilient modulus. The aim of this paper is to analyse the effect of ageing on the stiffness of asphalt mixtures with different amounts of recycled concrete aggregates, before and after a heat treatment, which was analysed through the assessment of its bitumen properties. Moreover, this paper also aims to analyse whether the rolling thin-film oven test is able to simulate the ageing effect of the heat treatment. In the laboratory work, a paving grade bitumen B50/70 has been used to produce asphalt mixtures with 0% and 30% recycled concrete aggregates, and the bitumen was later characterised (using penetration, softening point, dynamic viscosity and dynamic shear rheometer tests) in various situations, such as when using virgin bitumen, short-term aged bitumen, aged bitumen after heat treatment (simulated with 4 h of rolling thin-film oven test) and bitumen samples recovered from asphalt mixtures with different production mixes (0% and 30% recycled concrete aggregate) and heat treatment conditions (0 and 4 h of curing time in the oven). Based on the results obtained, it could be concluded that the ageing resulting from the heat treatment is the primary cause of the hot-mix asphalt's increased stiffness, while recycled concrete aggregate content has a small influence. Moreover, it could be concluded that when there is no curing time, the recycled concrete aggregate protects the bitumen against ageing. Additionally, it could be stated that the rolling thin-film test is able to adequately simulate the ageing effect of the heat treatment. Thus, this test is useful for determining the ageing suffered by the bitumen when the recycled concrete aggregate mixture is manufactured using a heat treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this work is to evaluate, by non-destructive techniques, seven old Chestnut beams. For that, after the geometric assessment and the detailed visual inspection that allowed to strength grade the beams, a series of non-destructive tests was setup. In a first step, non-destructive bending tests, under the elastic limit, were performed to quantify the modulus of elasticity in bending (MoE) of the seven beams. Then, Resistograph® and Pilodyn® tests were done to assess the superficial decay and to have aclearer idea of the voids dimensions. Then, two beams were tested in bending until failure to evaluate the bending strength. In a second step, end parts were cut from the beams, one per end of the beams, to perform Resistograph®, Pilodyn® and ultrasound tests, to quantify the density of the beams and to extract meso-specimens to be used in tension parallel to the grain tests

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The force distribution inside a dovetail joint is complex. Wood is simultaneously loaded in different directions in the several connected surfaces. The analytical solutions available for the analysis of the behavior of those carpentry joints rely on the mechanical properties of wood. In particular, the stiffness properties of wood under compression are crucial for the forces equilibrium. Simulations showed that the stiffness values considered in each of the springs normally assumed in the analytical models, have great influence in the bearing capacity and stiffness of the dovetail joints, with important consequence on the stress distribution over the overall structure. In a wide experimental campaign, the properties under compression of the most common wood species of existing timber structures have been determined. Then, a solved example of a dovetail joint is presented assuming different wood species and the corresponding strength and stiffness properties values obtained in the tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given the need for using more sustainable constructive solutions, an innovative composite material based on a combination of distinct industrial by-products is proposed aiming to reduce waste and energy consumption in the production of construction materials. The raw materials are thermal activated flue-gas desulphurization (FGD) gypsum, which acts as a binder, granulated cork as the aggregate and recycled textile fibres from used tyres intended to reinforce the material. This paper presents the results of the design of the composite mortar mixes, the characterization of the key physical properties (density, porosity and ultrasonic pulse velocity) and the mechanical validation based on uniaxial compressive tests and fracture energy tests. In the experimental campaign, the influence of the percentage of the raw materials in terms of gypsum mass, on the mechanical properties of the composite material was assessed. It was observed that the percentage of granulated cork decreases the compressive strength of the composite material but contributes to the increase in the compressive fracture energy. Besides, the recycled textile fibres play an important role in the mode I fracture process and in the fracture energy of the composite material, resulting in a considerable increase in the mode I fracture energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, recycling has become a very important objective for the society in the scope of a closed loop product life cycle. In recent years, new recycling techniques have been developed in the area of road pavements that allow the incorporation of high percentages of reclaimed asphalt (RA) materials in recycled asphalt mixtures. The use of foamed bitumen for production of recycled asphalt mixtures is one of those techniques, which also allows the reduction of the mixing temperatures (warm mix technology). However, it is important to evaluate if this solution can maintain or improve the performance of the resulting mixtures. Thus, the main aim of the present study is to assess the performance of warm recycled asphalt mixtures incorporating foamed bitumen as the new binder and 50% RA, in comparison with a control mixture using conventional bitumen. Four mixtures have been produced with 50% RA, one of them at typical high mixing temperatures with a conventional bitumen (control mixture) and the other three with foamed bitumen at different production temperatures. These four mixtures were tested to evaluate their compactability and water sensitivity. The laboratory test results showed that the production of recycled mixtures with foamed bitumen can be reduced by 40ºC without changing the performance of the resulting mixtures.