952 resultados para Materials testing laboratories
Resumo:
A significant part of the life of a mechanical component occurs, the crack propagation stage in fatigue. Currently, it is had several mathematical models to describe the crack growth behavior. These models are classified into two categories in terms of stress range amplitude: constant and variable. In general, these propagation models are formulated as an initial value problem, and from this, the evolution curve of the crack is obtained by applying a numerical method. This dissertation presented the application of the methodology "Fast Bounds Crack" for the establishment of upper and lower bounds functions for model evolution of crack size. The performance of this methodology was evaluated by the relative deviation and computational times, in relation to approximate numerical solutions obtained by the Runge-Kutta method of 4th explicit order (RK4). Has been reached a maximum relative deviation of 5.92% and the computational time was, for examples solved, 130,000 times more higher than achieved by the method RK4. Was performed yet an Engineering application in order to obtain an approximate numerical solution, from the arithmetic mean of the upper and lower bounds obtained in the methodology applied in this work, when you don’t know the law of evolution. The maximum relative error found in this application was 2.08% which proves the efficiency of the methodology "Fast Bounds Crack".
Resumo:
Background: Material wear testing is an important technique in the development and evaluation of materials for use in implant for total knee arthroplasty. Since a knee joint induces a complex rolling-gliding movement, standardised material wear testing devices such as Pin-on-Disc or Ring-on-Disc testers are suitable to only a limited extent because they generate pure gliding motion only.Methods: A rolling-gliding wear simulator was thus designed, constructed and implemented, which simulates and reproduces the rolling-gliding movement and loading of the knee joint on specimens of simplified geometry. The technical concept was to run a base-plate, representing the tibia plateau, against a pivoted cylindrical counter-body, representing one femur condyle under an axial load. A rolling movement occurs as a result of the friction and pure gliding is induced by limiting the rotation of the cylindrical counter-body. The set up also enables simplified specimens handling and removal for gravimetrical wear measurements. Long-term wear tests and gravimetrical wear measurements were carried out on the well known material pairings: cobalt chrome-polyethylene, ceramic-polyethylene and ceramic-ceramic, over three million motion cycles to allow material comparisons to be made.Results: The observed differences in wear rates between cobalt-chrome on polyethylene and ceramic on polyethylene pairings were similar to the differences of published data for existing material-pairings. Test results on ceramic-ceramic pairings of different frontal-plane geometry and surface roughness displayed low wear rates and no fracture failures.Conclusions: The presented set up is able to simulate the rolling-gliding movement of the knee joint, is easy to use, and requires a minimum of user intervention or monitoring. It is suitable for long-term testing, and therefore a useful tool for the investigation of new and promising materials which are of interest for application in knee joint replacement implants. © 2010 Richter et al; licensee BioMed Central Ltd.
Resumo:
Tese (Doutorado em Tecnologia Nuclear)
Resumo:
Tese (Doutorado em Tecnologia Nuclear)
Resumo:
The establishment of support platforms for the development of a new culture in design education, in order to achieve both research exploitation and its results, as an approach to the industrial community, challenges higher education institutions to rethink their functioning, divided between investigation on their own initiative or on demand, and its usefulness / practical application. At the same time, through design education, how can they be the engine that aggregates all these frequently antagonistic interests? Polytechnic institutes are predisposed to collaboration and interdisciplinarity. In our course of Technology and Design of Furniture, the availability of a production unit, testing laboratories, and expertise in engineering, design and marketing, encourage the development of a holistic project. In order to develop such knowledge, we adapt three important ways of thinking in designing interactions influenced by the traditional approach, namely, 1) identifying and understanding a design problem, i.e. a market need, 2) defining the design process and knowing what can be used for design education, i.e. opportunities for design education, and 3) sustainability of this framework and design projects' alignment with education in the same field. We explain our approach by arguing from the academicenterprise experiences perspective. This concept is proposed as a way to achieve those three ways of thinking in design education. Then, a set of interaction attributes is defined to explain how engineering and product design education can enhance meaningful relations with manufacturers, stakeholders and society in general. A final discussion is presented with the implications and benefits of this approach. The results suggest that through academic-enterprise partnerships in design, several goals such as students' motivation, product design innovation and potential for knowledge transfer to industries can be achieved.
Resumo:
Adiabatic compression testing of components in gaseous oxygen is a test method that is utilized worldwide and is commonly required to qualify a component for ignition tolerance under its intended service. This testing is required by many industry standards organizations and government agencies; however, a thorough evaluation of the test parameters and test system influences on the thermal energy produced during the test has not yet been performed. This paper presents a background for adiabatic compression testing and discusses an approach to estimating potential differences in the thermal profiles produced by different test laboratories. A “Thermal Profile Test Fixture” (TPTF) is described that is capable of measuring and characterizing the thermal energy for a typical pressure shock by any test system. The test systems at Wendell Hull & Associates, Inc. (WHA) in the USA and at the BAM Federal Institute for Materials Research and Testing in Germany are compared in this manner and some of the data obtained is presented. The paper also introduces a new way of comparing the test method to idealized processes to perform system-by-system comparisons. Thus, the paper introduces an “Idealized Severity Index” (ISI) of the thermal energy to characterize a rapid pressure surge. From the TPTF data a “Test Severity Index” (TSI) can also be calculated so that the thermal energies developed by different test systems can be compared to each other and to the ISI for the equivalent isentropic process. Finally, a “Service Severity Index” (SSI) is introduced to characterizing the thermal energy of actual service conditions. This paper is the second in a series of publications planned on the subject of adiabatic compression testing.
Resumo:
Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest as smart materials for novel space-based telescope applications. Dimensional adjustments of adaptive thin polymer films are achieved via controlled charge deposition. Predicting their long-term performance requires a detailed understanding of the piezoelectric property changes that develop during space environmental exposure. The overall materials performance is governed by a combination of chemical and physical degradation processes occurring in low Earth orbit as established by our past laboratory-based materials performance experiments (see report SAND 2005-6846). Molecular changes are primarily induced via radiative damage, and physical damage from temperature and atomic oxygen exposure is evident as depoling, loss of orientation and surface erosion. The current project extension has allowed us to design and fabricate small experimental units to be exposed to low Earth orbit environments as part of the Materials International Space Station Experiments program. The space exposure of these piezoelectric polymers will verify the observed trends and their degradation pathways, and provide feedback on using piezoelectric polymer films in space. This will be the first time that PVDF-based adaptive polymer films will be operated and exposed to combined atomic oxygen, solar UV and temperature variations in an actual space environment. The experiments are designed to be fully autonomous, involving cyclic application of excitation voltages, sensitive film position sensors and remote data logging. This mission will provide critically needed feedback on the long-term performance and degradation of such materials, and ultimately the feasibility of large adaptive and low weight optical systems utilizing these polymers in space.
Resumo:
A study of the correlations between material properties and normalized erosion resistance (inverse of erosion rates) of various materials tested in the rotating disk and the flow venturi at various intensities indicates that different individual properties influence different stages of erosion. At high and low intensities of erosion, energy properties predominate the phenomenon, whereas at intermediate intensities strength and acoustic properties become more significant. However, both strength and energy properties are significant in the correlations for the entire spectrum of erosion when extensive cavitation and liquid impingement data from several laboratories involving different intensities and hydrodynamic conditions are considered. The use of true material properties improved the statistical parameters by 3 to 37%, depending on the intensity of erosion. It is possible to evaluate qualitatively the erosion resistances of materials based on the true stress-true strain curves.
Resumo:
Editors' note:Flexible, large-area display and sensor arrays are finding growing applications in multimedia and future smart homes. This article first analyzes and compares current flexible devices, then discusses the implementation, requirements, and testing of flexible sensor arrays.—Jiun-Lang Huang (National Taiwan University) and Kwang-Ting (Tim) Cheng (University of California, Santa Barbara)
Resumo:
Small-scale mechanical testing of materials has gained prominence in the last decade or so due to the continuous miniaturization of components and devices in everyday application. This review describes the various micro-fabrication processes associated with the preparation of miniaturized specimens, geometries of test specimens and the small scale testing techniques used to determine the mechanical behaviour of materials at the length scales of a few hundred micro-meters and below. This is followed by illustrative examples in a selected class of materials. The choice of the case studies is based on the relevance of the materials used in today's world: evaluation of mechanical properties of thermal barrier coatings (TBCs), applied for enhanced high temperature protection of advanced gas turbine engine components, is essential since its failure by fracture leads to the collapse of the engine system. Si-based substrates, though brittle, are indispensible for MEMS/NEMS applications. Biological specimens, whose response to mechanical loads is important to ascertain their role in diseases and to mimic their structure for attaining high fracture toughness and impact resistance. An insight into the mechanisms behind the observed size effects in metallic systems can be exploited to achieve excellent strength at the nano-scale. A future outlook of where all this is heading is also presented.
Resumo:
Experimental research on a 150 kW arc-heated plasma testing facility was conducted. Stable plasma jets with different gas compositions, temperatures and velocities were obtained at chamber pressure between 400 Pa – 100 kPa. Stagnation ablation experiments were conducted on samples of typical super alloys used for thermal protection systems. The microstructure and hardness of alloys before and after ablation were compared.
Resumo:
Index properties such as the liquid limit and plastic limit are widely used to evaluate certain geotechnical parameters of fine-grained soils. Measurement of the liquid limit is a mechanical process, and the possibility of errors occurring during measurement is not significant. However, this is not the case for plastic limit testing, despite the fact that the current method of measurement is embraced by many standards around the world. The method in question relies on a fairly crude procedure known widely as the ‘thread rolling' test, though it has been the subject of much criticism in recent years. It is essential that a new, more reliable method of measuring the plastic limit is developed using a mechanical process that is both consistent and easily reproducible. The work reported in this paper concerns the development of a new device to measure the plastic limit, based on the existing falling cone apparatus. The force required for the test is equivalent to the application of a 54 N fast-static load acting on the existing cone used in liquid limit measurements. The test is complete when the relevant water content of the soil specimen allows the cone to achieve a penetration of 20 mm. The new technique was used to measure the plastic limit of 16 different clays from around the world. The plastic limit measured using the new method identified reasonably well the water content at which the soil phase changes from the plastic to the semi-solid state. Further evaluation was undertaken by conducting plastic limit tests using the new method on selected samples and comparing the results with values reported by local site investigation laboratories. Again, reasonable agreement was found.